Topology/Computer science

Digital homotopy fixed point theory

Théorie du point fixe pour les homotopies digitales

Ozgur Ege a, Ismet Karaca b

a Department of Mathematics, Celal Bayar University, Muradiye, Manisa, 45140, Turkey
b Department of Mathematics, Ege University, Bornova, Izmir, 35100, Turkey

A R T I C L E I N F O

Article history:
Received 4 January 2015
Accepted after revision 6 July 2015
Available online 23 October 2015
Presented by Étienne Ghys

A B S T R A C T

In this paper, we construct a framework which is called the digital homotopy fixed point theory. We get new results associating digital homotopy and fixed point theory. We also give an application on this theory.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous démontrons de nouveaux résultats sur les images digitales dont les homotopies digitales entre deux transformations continues de l’image possèdent un chemin de points fixes. Ceci conduit à une théorie du point fixe des homotopies digitales, dont nous donnons une application sur une image digitale.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Digital topology plays a key role in image processing and computer graphics. In this field, the general aim is to obtain significant results on digital images in \(\mathbb{Z}^n \) by using methods of geometric and algebraic topology. Fixed point theory interacts with several areas of mathematics such as mathematical analysis, general topology, and functional analysis. There are various applications of fixed point theory in mathematics, topology, game theory, computer science, engineering, and image processing. Fixed point theorems are used to solve some problems in mathematics and engineering.

In recent years, there have been many developments in digital topology. Boxer [1–6] studied digital images. Some results and characteristic properties on the digital homology groups of 2D digital images are given in [7] and [14]. Ege and Karaca [8] construct Lefschetz fixed point theory for digital images and study the fixed point properties of digital images. Ege and Karaca [9] give relative and reduced Lefschetz fixed point theorems for digital images. They also calculate degree of the antipodal map for sphere-like digital images using fixed point properties. Ege and Karaca [10] prove Banach’s fixed point theorem for digital images and give an application to image processing.

This work is organized as follows. In the first part, we give the required background about the digital topology and digital homotopy. Then, we state and prove some results on digital retractions and digital fixed point theory. We give an application of digital fixed point theory to a digital image.

E-mail addresses: ozgur.ege@cbu.edu.tr (O. Ege), ismet.karaca@ege.edu.tr (I. Karaca).

http://dx.doi.org/10.1016/j.crma.2015.07.006
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
2. Preliminaries

A digital image is a pair \((X, \kappa)\), where \(X \subseteq \mathbb{Z}^n\) for some positive integer \(n\) and \(\kappa\) is an adjacency relation for the members of \(X\). There are various adjacency relations [12, 13].

Definition 2.1. (See [4].) For a positive integer \(l\) with \(1 \leq l \leq n\) and two distinct points \(p = (p_1, p_2, \ldots, p_n), q = (q_1, q_2, \ldots, q_n) \in \mathbb{Z}^n\), \(p\) and \(q\) are \(c_l\)-adjacent if

1. there are at most \(l\) indices \(i\) such that \(|p_i - q_i| = 1\), and
2. for all other indices \(j\) such that \(|p_j - q_j| \neq 1\), \(p_j = q_j\).

The notation \(c_l\) represents the number of points \(q \in \mathbb{Z}^n\) that are adjacent to a given point \(p \in \mathbb{Z}^n\). Thus, in \(\mathbb{Z}\), we have \(c_1 = 2\)-adjacency (see Fig. 1); in \(\mathbb{Z}^2\), we have \(c_1 = 4\)-adjacency and \(c_2 = 8\)-adjacency (see Fig. 2); in \(\mathbb{Z}^3\), we have \(c_1 = 6\)-adjacency, \(c_2 = 18\)-adjacency, and \(c_3 = 26\)-adjacency [4] (see Fig. 3).

Given a natural number \(l\) in conditions (1) and (2) with \(1 \leq l \leq n\), \(l\) determines each of the \(\kappa\)-adjacency relations of \(\mathbb{Z}^n\) in terms of (1) and (2) [11] as follows:

\[\kappa = \left\{ 2n \ (n \geq 1), \ 3^n - 1 \ (n \geq 2), \ 3^n - \sum_{t=0}^{r-2} \binom{n}{t} 2^{n-t} - 1 \ (2 \leq r \leq n - 1, \ n \geq 3) \right\} \]

where \(\binom{n}{t} = \frac{n!}{(n-t)!t!}\).

Definition 2.2. (See [1].) The set \([a, b]_\mathbb{Z} = \{z \in \mathbb{Z} \mid a \leq z \leq b\}\) is called a digital interval where \(a, b \in \mathbb{Z}\) and \(a < b\).

Definition 2.3. (See [12].) Given two points \(x_i, y_i \in (X_i, \kappa_i), \ i \in \{0, 1\}\), \((x_0, x_1)\) and \((y_0, y_1)\) are adjacent in \(X_0 \times X_1\) if and only if one of the following is satisfied:

\[\begin{align*}
\text{(i) } & x_0 = y_0 \text{ and } x_1 \text{ and } y_1 \text{ are } \kappa_1\text{-adjacent}; \ \text{or} \\
\text{(ii) } & x_0 \text{ and } y_0 \text{ are } \kappa_0\text{-adjacent and } x_1 = y_1; \ \text{or} \\
\text{(iii) } & x_0 \text{ and } y_0 \text{ are } \kappa_0\text{-adjacent and } x_1 \text{ and } y_1 \text{ are } \kappa_1\text{-adjacent.}
\end{align*} \]

The adjacency of the Cartesian product of digital images \((X_0, \kappa_0)\) and \((X_1, \kappa_1)\) is denoted by \(\kappa_+\).
A κ-neighbor of $p \in \mathbb{Z}^n$ [2] is a point of \mathbb{Z}^n that is κ-adjacent to p. A digital image $X \subset \mathbb{Z}^n$ is κ-connected [13] if and only if for every pair of different points $x, y \in X$, there is a set $\{x_0, x_1, \ldots, x_r\}$ of points of a digital image X such that $x = x_0$, $y = x_r$, and x_i and x_{i+1} are κ-neighbors where $i = 0, 1, \ldots, r - 1$.

Definition 2.4. (See [2].) Let $X \subset \mathbb{Z}^{n_0}$ and $Y \subset \mathbb{Z}^{n_1}$ be digital images with κ_0-adjacency and κ_1-adjacency, respectively. A function $f : X \rightarrow Y$ is said to be (κ_0, κ_1)-continuous if, for every κ_0-connected subset U of X, $f(U)$ is a κ_1-connected subset of Y. We say that such a function is digitally continuous.

Proposition 2.1. (See [2].) Let $X \subset \mathbb{Z}^{n_0}$ and $Y \subset \mathbb{Z}^{n_1}$ be digital images with κ_0-adjacency and κ_1-adjacency, respectively. The function $f : X \rightarrow Y$ is (κ_0, κ_1)-continuous if and only if for every κ_0-adjacent points $\{x_0, x_1\}$ of X, either $f(x_0) = f(x_1)$ or $f(x_0)$ and $f(x_1)$ are κ_1-adjacent in Y.

Definition 2.5. (See [5].) Let $X \subset \mathbb{Z}^{n_0}$ and $Y \subset \mathbb{Z}^{n_1}$ be digital images with κ_0-adjacency and κ_1-adjacency, respectively. A function $f : X \rightarrow Y$ is a (κ_0, κ_1)-isomorphism, if f is (κ_0, κ_1)-continuous and bijective and further f^{-1} is (κ_1, κ_0)-continuous. It is denoted by $X \cong_{(\kappa_0, \kappa_1)} Y$.

A $(2, \kappa)$-continuous function $f : [0, m]_2 \rightarrow X$ such that $f(0) = x$ and $f(m) = y$ is called a digital κ-path [2] from x to y in a digital image X. In a digital image (X, κ), for every two points, if there is a κ-path, then X is called κ-path connected.

Definition 2.6. (See [2].) Let $(X, \kappa_0) \subset \mathbb{Z}^{n_0}$ and $(Y, \kappa_1) \subset \mathbb{Z}^{n_1}$ be digital images. Two (κ_0, κ_1)-continuous functions $f, g : X \rightarrow Y$ are digitally (κ_0, κ_1)-homotopic in Y if there is a positive integer m and a function $H : X \times [0, m]_2 \rightarrow Y$ such that

- for all $x \in X$, $H(x, 0) = f(x)$ and $H(x, m) = g(x)$;
- for all $x \in X$, the induced function $H_x : [0, m]_2 \rightarrow Y$ defined by $H_x(t) = H(x, t)$ for all $t \in [0, m]_2$, is $(2, \kappa_1)$-continuous;
- and
- for all $t \in [0, m]_2$, the induced function $H_t : X \rightarrow Y$ defined by $H_t(x) = H(x, t)$ for all $x \in X$, is (κ_0, κ_1)-continuous.

The function H is called a digital (κ_0, κ_1)-homotopy between f and g. If these functions are digitally (κ_0, κ_1)-homotopic, it is denoted $f \simeq_{(\kappa_0, \kappa_1)} g$.

Definition 2.7. (See [2].) A digital image (X, κ) is said to be κ-contractible if its identity map is (κ, κ)-homotopic to a constant function c for some $c \in X$ where the constant function $\tilde{c} : X \rightarrow X$ is defined by $\tilde{c}(x) = c$ for all $x \in X$.

- Let $\emptyset \neq A \subset X$. Assume κ-adjacency for A and X. We say that A is a κ-retract of X if and only if there is a κ-continuous function $r : X \rightarrow A$ such that $r(a) = a$ for all $a \in A$. The function r is called a κ-retraction of X onto A.

Let $i : A \rightarrow X$ be the inclusion function. A is called a κ-deformation retract of X [3] if there exists a κ-homotopy $H : X \times [0, 1]_2 \rightarrow X$ between the identity map id_X and $i \circ r$, for some κ-retraction r of X onto A.

A fixed point of a function $f : X \rightarrow X$ is a point $x \in X$ such that $f(x) = x$.

3. Digital homotopy fixed point theory

We firstly recall the fixed point property of a digital image. Let (X, κ) be a digital image and $f : (X, \kappa) \rightarrow (X, \kappa)$ be any (κ, κ)-continuous function. We say the digital image (X, κ) has the fixed point property [8] if for every (κ, κ)-continuous map $f : X \rightarrow X$ there exists $x \in X$ such that $f(x) = x$. The notion of homotopy fixed point property is defined by Szymik [15]. We give new definitions and theorems using his idea.

Definition 3.1. A digital image (X, κ) has the digital fixed point property with respect to a digital interval $[0, m]_2$ if for all (κ_*, κ)-continuous maps $f : [0, m]_2 \times X \rightarrow X$ where κ_* is the adjacency for $[0, m]_2 \times X$, there exists at least one $(2, \kappa)$-continuous map $p : [0, m]_2 \rightarrow X$ of fixed points.

Definition 3.2. A digital image (X, κ) has the digital homotopy fixed point property if it has the digital fixed point property with respect to $[0, m]_2$ for all integers $m \geq 0$.

Definition 3.2 can be stated as follows: A digital image (X, κ) has the digital homotopy fixed point property if for all digital homotopies $f : [0, m]_2 \times X \rightarrow X$ in X, there is a $(2, \kappa)$-continuous κ-path $p : [0, m]_2 \rightarrow X$ such that $p(t)$ is a fixed point of f_t for all t in $[0, m]_2$.

Now we prove two propositions about digital retraction and the fixed point property of a digital image (X, κ) with respect to a digital interval $[0, m]_2$.
Proposition 3.1. If a digital image \((X, \kappa)\) has the digital fixed point property with respect to a digital interval \([0, m]_Z\), then \((X, \kappa)\) has the digital fixed point property with respect to \([0, n]_Z\) where \(n < m\).

Proof. We take two \((2, 2)\)-continuous maps \(i : [0, n]_Z \to [0, m]_Z\) and \(r : [0, m]_Z \to [0, n]_Z\) such that \(r \circ i = \text{id}_{[0, n]_Z}\). From the hypothesis, we have a \((2, \kappa)\)-continuous map \(q : [0, m]_Z \to X\) of fixed points. If there exists a digital continuous map \(f : [0, n]_Z \times X \to X\), we get the digital continuous map \(g = f \circ (r \times \text{id}_X)\), i.e.

\[
[0, m]_Z \times X \xrightarrow{r \times \text{id}_X} [0, n]_Z \times X \xrightarrow{f} X.
\]

It is clear that \(p = q \circ i\) is a \((2, \kappa)\)-continuous map of fixed points for \(f\). \(\square\)

Corollary 3.3. The digital homotopy fixed point property requires the digital fixed point property.

Example 1. Let \(X = [a, a + 1]_Z\) be a digital interval where \(a \in Z\). It is easy to see that \((X, 2)\) has both the digital fixed point property and digital homotopy fixed point property.

Proposition 3.2. If a digital image \((X, \kappa)\) is a digital \(\kappa\)-retract of a digital image \((Y, \kappa)\) that has the digital fixed point property with respect to a digital interval \([0, m]_Z\), then \((X, \kappa)\) also has the digital fixed point property with respect to \([0, m]_Z\).

Proof. Let \((X, \kappa)\) be a digital \(\kappa\)-retract of \((Y, \kappa)\). Then there exists a \(\kappa\)-continuous map \(r : Y \to X\) such that \(r \circ i = \text{id}_X\) where \(i : X \to Y\) is an inclusion map. Considering the digital continuous map \(f : [0, m]_Z \times X \to X\), we have a digital continuous map \(g = i \circ f \circ (i(0, n)_Z \times r)\), i.e.

\[
[0, m]_Z \times Y \xrightarrow{\text{id}_{[0, n]_Z} \times r} [0, m]_Z \times X \xrightarrow{f} X \xrightarrow{i} Y.
\]

By the hypothesis, \(g\) has a \((2, \kappa)\)-continuous map \(\alpha : [0, m]_Z \to Y\) of fixed points, i.e.

\[i \circ f(u, r \circ \alpha(u)) = \alpha(u)\]

for all \(u \in [0, n]_Z\). If we apply \(r\) to the last equality, we have

\[r \circ i \circ f(u, r \circ \alpha(u)) = r \circ \alpha(u)\]

and \(r \circ \alpha = p\) is a \((2, \kappa)\)-continuous map of fixed points for \(f\). As a result, \((X, \kappa)\) has the digital fixed point property with respect to \([0, m]_Z\). \(\square\)

Theorem 3.4. Let \((X, \kappa)\) and \((Y, \kappa')\) be digital images such that \(X \cong_{(\kappa, \kappa')} Y\). If \((X, \kappa)\) has the digital homotopy fixed point property, then \((Y, \kappa')\) has the digital homotopy fixed point property.

Proof. There exists a bijective function \(h : (X, \kappa) \to (Y, \kappa')\) such that \(h\) is \((\kappa, \kappa')\)-continuous and that its inverse \(h^{-1}\) is \((\kappa', \kappa)\)-continuous because \(X \cong_{(\kappa, \kappa')} Y\). Also, \(X\) has the digital homotopy fixed point property; i.e., for all digital homotopies \(f : [0, m]_Z \times X \to X\) in \(X\) there is a \((2, \kappa)\)-continuous \(\kappa\)-path \(p : [0, m]_Z \to X\) such that \(p(t)\) is a fixed point of \(f_t\) for all \(t\) in \([0, m]_Z\). Consider the following diagram:

\[
[0, n]_Z \xrightarrow{i} [0, n]_Z \times X \xrightarrow{\alpha \times \text{id}_X} [0, m]_Z \times X \xrightarrow{f} X \xrightarrow{h} Y.
\]

If we take the composition of all digital continuous maps, for all digital homotopies \(g : [0, n]_Z \times Y \to Y\) in \(Y\), we have a \((2, \kappa)\)-continuous \(\kappa\)-path \(q : [0, n]_Z \to Y\) such that \(q(t)\) is a fixed point of \(g_t\) for all \(t\) in \([0, n]_Z\) where \(q = h \circ f \circ (\alpha \times \text{id}_X) \circ i\). Thus we get the required result. \(\square\)

Corollary 3.5. The digital homotopy fixed point property is a topological invariant for digital images.

4. An application

In this section, we deal with an application on the digital homotopy fixed point theory.

Using Proposition 3.2, we give an application. It is clear that the digital image \([6]\)

\[\text{MSC}_8 = \{c_0 = (1, 0), c_1 = (0, 1), c_2 = (0, 0), c_3 = (0, 2)\} \subset Z^2\]

with 8-adjacency is a digital 8-deformation retract of the digital image \([-3, 3]_Z \setminus \{(0, 0)\}\) (see Fig. 4). Let \(f : \text{MSC}_8 \to \text{MSC}_8\) be defined by \(f(c_i) = c_{(i + 1) \mod 4}\) where \(c_i \in X\). \(f\) is an \((8, \kappa)\)-continuous function, but \(f\) has no fixed point. As a result, \(\text{MSC}_8\) has no digital fixed point property with respect to any digital interval \([0, m]_Z\). By Proposition 3.2, we conclude that \([-3, 3]_Z \setminus \{(0, 0)\}\) has no digital fixed point property with respect to any digital interval \([0, m]_Z\).
5. Conclusion

The main purpose of paper is to deal with the digital homotopy fixed point theory. We hope that the fixed point theory with some applications will be useful in the digital topology and image processing. We finally show that digital homotopy fixed point theory could be used to solve some image processing problems.

Acknowledgements

We would like to express our gratitude to the anonymous referees for their helpful suggestions and corrections.

References