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In this note, we consider the derivative nonlinear Schrödinger equation on the circle. In 
particular, by adapting Wu’s recent argument to the periodic setting, we prove its global 
well-posedness in H1(T), provided that the mass is less than 4π . Moreover, this mass 
threshold is independent of spatial periods.
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r é s u m é

On considère dans cette note l’équation de Schrödinger avec dérivée sur le cercle. En 
particulier, en adaptant l’argument récent de Wu au cas periodique, on prouve que cette 
équation est globalement bien posée dans H1(T), pourvu que la masse soit inférieure à 
4π . En outre, ce seuil pour la masse est indépendant des périodes spatiales.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, we consider the global well-posedness of the following derivative nonlinear Schrödinger equation (DNLS) 
on TL := R/(LZ) � [0, L):

{
i∂t u + ∂2

x u = i∂x(|u|2u)

u|t=0 = u0 ∈ H1(TL),
(x, t) ∈ TL ×R. (1.1)

Equation (1.1) is known to be completely integrable and thus possesses an infinite sequence of conservation laws. For our 
analysis, the following conservation laws play an important role:
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Mass: M(u) =
∫
TL

|u|2dx, (1.2)

Hamiltonian: H(u) = Im
∫
TL

uuxdx + 1

2

∫
TL

|u|4dx, (1.3)

Energy: E(u) =
∫
TL

|ux|2dx + 3

2
Im

∫
TL

uuuuxdx + 1

2

∫
TL

|u|6dx. (1.4)

Let us briefly go over the known well-posedness results on T, i.e. with L = 1. Herr [5] proved the local well-posedness 
of (1.1) in H

1
2 (T). He also proved the global well-posedness in H1(T), under the assumption that the mass is less than 2

3 .1

In the low-regularity setting, Win [10] applied the I-method [2,3] and proved the global well-posedness of (1.1) in Hs(T), 
s > 1

2 , provided that the mass is sufficiently small.2 Our main interest in this note is to improve the mass threshold for the 
global well-posedness of (1.1) in the smooth setting, i.e. in H1(TL).

On R, Hayashi–Ozawa [4] proved the global well-posedness of (1.1) in H1(R), provided that the mass is less than 2π . By 
the sharp Gagliardo–Nirenberg inequality due to Weinstein [9]:

‖ f ‖L6(R) ≤ 4

π2
‖∂x f ‖

1
3
L2(R)

‖ f ‖
2
3
L2(R)

,

this smallness of mass guarantees that the energy E(u) remains coercive and controls the Ḣ1(R)-norm of a solution. Thus, 
this situation is analogous to that for the focusing quintic nonlinear Schrödinger equation (NLS).3 On the one hand, there 
is a dichotomy between global well-posedness and finite time blowup solutions for the focusing quintic NLS on R, where 
the mass threshold is given by the mass of the ground state. On the other hand, DNLS has a much richer structure such 
as complete integrability and the question of global well-posedness/finite time blowup solutions for large masses has been 
open for decades. Recently, Wu [11,12] made a progress in this direction. In particular, he proved the global well-posedness 
of (1.1) on R for masses less than 4π . Our main result states that the global well-posedness of (1.1) in the periodic setting 
also holds with the same mass threshold 4π .

Theorem 1.1. Let L > 0. Then, the derivative nonlinear Schrödinger equation (1.1) on TL is globally well-posed in H1(TL), provided 
that the mass is less than 4π .

Theorem 1.1 improves the known mass threshold in [5] for global well-posedness in H1(T). Moreover, note that the mass 
threshold 4π is independent of the period L.

The question of global well-posedness/finite time blowup solutions for larger masses (≥ 4π ) remains open on both R
and TL . It is worthwhile to note that (1.1) possesses finite-time blowup solutions under the Dirichlet boundary condition on 
intervals and the half-line R+ = [0, ∞), if E(u) < 0 (under some extra conditions). See [8,11].

The proof of Theorem 1.1 is based on Wu’s argument [12]. On the one hand, the following sharp Gagliardo–Nirenberg 
inequality:

‖ f ‖L6(R) ≤ CGN‖∂x f ‖
1
9
L2(R)

‖ f ‖
8
9
L4(R)

(1.5)

plays an important role in [12]. Here, the optimal constant CGN is given by CGN = 3
1
6 (2π)− 1

9 . See Agueh [1]. On the other 
hand, (1.5) does not hold on TL and thus we need to consider a variation of (1.5) suitable for our application on TL . 
Moreover, the gauge transform in the periodic setting introduces extra terms in the conservation laws that we need to 
control.

2. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. Note that Theorem 1.1 follows once we prove the following propo-
sition for all sufficiently small δ > 0.

Proposition 2.1. Let L, δ > 0. Then, (1.1) on TL is globally well-posed in H1(TL) provided that the mass is less than 4π
(
1 + 2δ

5L

)−2
.

1 As pointed out in [5, Remark 6.1], this mass threshold 2
3 is not sharp. In view of the corresponding result [4] on R, it is likely that the mass threshold 

can be improved to 2π within the framework of [5].
2 In [10], the mass threshold was not quantified in a precise manner. See, for example, [10, Lemma 3.4].
3 Note that both DNLS and the focusing quintic NLS on R are mass-critical.
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The remaining part of this note is devoted to the proof of Proposition 2.1.
We first establish the following version of the Gagliardo–Nirenberg inequality on TL which incorporates the sharp con-

stant from (1.5). The proof is a simple adaptation of the argument in Lebowitz–Rose–Speer [6].

Lemma 2.2. Let δ > 0. Then, we have

‖ f ‖L6(TL)
≤ CGN

(
1 + 2δ

5L

) 2
9 (

‖∂x f ‖2
L2(TL)

+ 2

δL
1
2

‖ f ‖2
L4(TL)

) 1
18 ‖ f ‖

8
9
L4(TL)

(2.1)

for f ∈ H1(TL).

Proof. Let f ∈ H1(TL) ⊂ C(TL). By periodicity, we assume that

| f (0)| = | f (L)| ≤ L− 1
4 ‖ f ‖L4(TL)

(2.2)

without loss of generality. Let F be an extension of f on [0, L] to R such that (i) supp F ⊂ [−δ, L + δ] and (ii) F linearly 
interpolates 0 and f (0) on [−δ, 0] and f (L) and 0 on [L, L + δ]. Then, by a direct calculation, we have:

‖ f ‖6
L6(TL)

≤ ‖F‖6
L6(R)

, (2.3)

‖F‖4
L4(R)

≤ ‖ f ‖4
L4(TL)

+ 2δ

5
| f (0)|4 ≤

(
1 + 2δ

5L

)
‖ f ‖4

L4(TL)
, (2.4)

‖∂x F‖2
L2(R)

≤ ‖∂x f ‖2
L2(TL)

+ 2
| f (0)|2

δ
≤ ‖∂x f ‖2

L2(TL)
+ 2

δL
1
2

‖ f ‖2
L4(TL)

. (2.5)

Then, the desired estimate (2.1) follows from (1.5) with (2.3), (2.4), and (2.5). �
Next, we briefly go over the gauge transform associated with (1.1) for a general parameter β ∈ R. The gauge transform 

for DNLS was first introduced by Hayashi–Ozawa [4] in the non-periodic setting. Herr [5] adapted the gauge transform (with 
β = 1) to the periodic setting, exhibiting remarkable cancellations of certain resonances.

Given f ∈ H1(TL), let I( f ) denote the mean-zero antiderivative of | f |2. Then, we define Gβ : H1(TL) → H1(TL) by 
Gβ( f ) := e−iβI( f ) f . With a slight abuse of notations, we also use Gβ to denote a map: C([−T , T ] : H1(TL)) → C([−T , T ] :
H1(TL)) by

Gβ(u) := e−iβI(u)u.

Given a local-in-time solution u ∈ C([−T , T ] : H1(TL)) to (1.1), the conservation of mass allows us to define

μ = μ(u) := 1

L
M(u) = 1

L

∫
TL

|u|2dx,

independent of time. We then define

v(x, t) := Gβ(u)(x, t) = Gβ(u)(x − 2βμt, t). (2.6)

A straightforward computation shows that v satisfies

i∂t v + ∂2
x v = 2(1 − β)i|v|2 vx + (1 − 2β)iv2 vx + βμ|v|2 v + β( 1

2 − β)|v|4 v − ψ(v)v, (2.7)

where

ψ(v) := β

L

(∫
TL

2 Im(v vx) +
(3

2
− 2β

)
|v|4

)
v + β2μ2.

It follows from (2.6) that M(v) is conserved for (2.7). Moreover, the conservation laws H(u) and E(u) in (1.3) and (1.4) for 
(1.1) yield the following conservation laws for (2.7):

H(v) = Im
∫
TL

v vxdx +
(

1

2
− β

)∫
TL

|v|4dx + Lβμ2, (2.8)

E(v) =
∫
TL

|vx|2dx +
(

3

2
− 2β

)
Im

∫
TL

v v v vxdx +
(

β2 − 3

2
β + 1

2

)∫
TL

|v|6dx

+ 2β Im
∫

v vxdx + β

(
3

2
− 2β

)
μ

∫
|v|4dx + Lβ2μ3. (2.9)
TL TL
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See, for example, the computations in [7]. It is worthwhile to note that H(v) is not a Hamiltonian for (2.7) in general. In 
establishing well-posedness, the gauge transform with β = 1 played an important role [4,5,10]. For our purpose, we set 
β = 3

4 in the following so that the second term in (2.9) is not present, and let G := G 3
4 . In particular, it follows from (2.8)

and (2.9) with the conservation of μ = μ(v) := L−1M(v) that the following quantity:

E(v) :=
∫
TL

|vx|2dx − 1

16

∫
TL

|v|6dx + 3

8
μ

∫
TL

|v|4dx (2.10)

is conserved for (2.7), where v = G(u).
Now, we move onto the proof of Proposition 2.1. The proof follows closely that in [12]. By time reversibility, we restrict 

our attention to positive times. For notational simplicity, we suppress the domain of integration TL with the understanding 
that all the norms are taken over TL . First, recall that Herr’s local well-posedness result [5] yields a simple blowup alterna-
tive: either (i) the solution u to (1.1) exists globally or (ii) there exists a finite time T∗ such that limt↑T∗ ‖u(t)‖Ḣ1 = ∞.

Fix δ > 0. We argue by contradiction. Suppose that there exists a solution u to (1.1) such that M(u) < 4π
(
1 + 2δ

5L

)−2
, 

but limt↑T∗ ‖u(t)‖Ḣ1 = ∞ for some finite time T∗ > 0. Let v = G(u) be the corresponding solution to (2.7). Since the gauge 
transform G in (2.6) is continuous on C([−T , T ] : H1), our assumption implies that there exists a sequence {tn}n∈N ⊂ R+
such that limn→∞ ‖v(tn)‖Ḣ1 = ∞ while M(v) = M(u) < 4π

(
1 + 2δ

5L

)−2
. Then, it follows from the conservation of E(v) that

‖v(tn)‖L6 → ∞, (2.11)

as n → ∞.
As in [12], we define { fn}n∈N by

fn = ‖v(tn)‖4
L4

‖v(tn)‖3
L6

.

Then, we have the following lemma.

Lemma 2.3. Let L, δ > 0. Then, we have

2C
− 9

2
GN

(
1 + 2δ

5L

)−1

+ εn ≤ fn ≤ M(v)
1
2 , (2.12)

where εn = εn(L, δ) → 0 as n → ∞. In particular, ‖v(tn)‖L4 → ∞ as n → ∞.

Proof. The upper bound in (2.12) follows from Hölder’s inequality. Then, it follows from the upper bound in (2.12) and 
(2.11) that

γn :=
(

2

δL
1
2

− 3

8
μ‖v(tn)‖2

L4

)‖v(tn)‖2
L4

‖v(tn)‖6
L6

−→ 0, (2.13)

as n → ∞. By Lemma 2.2 with (2.10), we have

fn ≥ C
− 9

2
GN

(
1 + 2δ

5L

)−1(
‖∂x v(tn)‖2

L2 + 2

δL
1
2

‖v(tn)‖2
L4

)− 1
4 ‖v(tn)‖

3
2
L6

= 2C
− 9

2
GN

(
1 + 2δ

5L

)−1(
1 + 16

E(v)

‖v(tn)‖6
L6

+ 16γn

)− 1
4

. (2.14)

Then, the lower bound in (2.12) follows from (2.11), (2.13), and (2.14) with the conservation of E(v). The second claim 
follows from (2.11) and (2.12). �

In the following, we use the conservation of the momentum P (v) defined by

P (v) := H(v) − 3

4L
M(v)2 = Im

∫
TL

v vxdx − 1

4

∫
TL

|v|4dx.

In order to exploit the momentum, we consider modulated functions φn(x, t) = eiαnx v(x, t) for some non-zero αn ∈ 2πZ/L
(to be chosen later). On the one hand, we have:

P (v) + 1

4

∫
|v|4dx = Im

∫
v vxdx = − 1

2αn
E(φn) + αn

2
M(v) + 1

2αn
E(v). (2.15)
TL TL
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On the other hand, by Lemma 2.2 with (2.10) and (2.13), we have:

E
(
(φn(tn)

) ≥ −(ηn + γn)‖v(tn)‖6
L6 (2.16)

where ηn is defined by

ηn := 1

16
−

(
1 + 2δ

5L

)−4

C−18
GN f −4

n . (2.17)

Case 1: ηn + γn ≤ 0 for infinitely many n.
In this case, we simply set αn = 2π

L . Then, for those values of n with ηn + γn ≤ 0, it follows from (2.15) and (2.16) with 
(2.13) that

1

4
‖v(tn)‖4

L4 ≤ L

4π
(ηn + γn)‖v(tn)‖6

L6 − P (v) + π

L
M(v) + L

4π
E(v)

≤ −P (v) + π

L
M(v) + L

4π
E(v).

Then, from the conservation of M , P , and E , we conclude that ‖v(tn)‖L4 = O (1). This is a contradiction to Lemma 2.3.

Case 2: ηn + γn > 0 for all sufficiently large n.
In this case, we choose

αn := 2π

L

[ L

2π

(
M(v)−1(ηn + γn)

) 1
2 ‖v(tn)‖3

L6

]
+ 2π

L
∈ 2πZ

L
,

where γn and ηn are as in (2.13) and (2.17). Here, [x] denotes the integer part of x. Then, from (2.15) and (2.16), we have

1

4
‖v(tn)‖4

L4 ≤ (
M(v)(ηn + γn)

) 1
2 ‖v(tn)‖3

L6 − P (v) + π

L
M(v) + 1

2αn
E(v).

Then, by Lemma 2.3, (2.11), (2.13), and (2.17) along with the conservation of M , P , and E , we obtain

f 6
n ≤ M(v) f 4

n − 16

(
1 + 2δ

5L

)−4

C−18
GN M(v) + o(1) (2.18)

as n → ∞. Arguing as in [12], we see that (2.18) is impossible if

M(u) = M(v) < 4π

(
1 + 2δ

5L

)−2

.

This completes the proof of Proposition 2.1 and hence the proof of Theorem 1.1.
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