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We present an asynchronous method for the explicit integration of multi-scale partial 
differential equations. This method is restricted by a local CFL condition rather than the 
traditional global CFL condition. First, we developed an upwind asynchronous forward 
Euler scheme for the transport equation and we proved that the asynchronous scheme 
is first order convergent. To improve the convergence rate of the asynchronous scheme, 
we derived an asynchronous Runge–Kutta 2 scheme from a standard explicit Runge–Kutta 
method.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une méthode asynchrone pour l’intégration explicite des équations aux 
dérivées partielles multi-échelles. Cette méthode est limitée par une condition CFL locale 
plutôt que par la condition CFL globale classique. Tout d’abord, nous avons développé un 
schéma d’Euler asynchrone pour la discrétisation de l’équation de transport et nous avons 
prouvé que le schéma asynchrone est convergent au premier ordre. Pour la montée en 
ordre, nous avons proposé un schéma Runge–Kutta 2 asynchrone, dérivé d’un schéma RK2 
classique, pour obtenir un schéma numériquement d’ordre 2.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Numerical time-stepping integration techniques used for modeling physical systems, such as combustion or atmospheric 
plasmas, generally fall into two categories: explicit and implicit schemes. In the explicit schemes, the time step is limited 
by the Courant–Friedrichs–Levy stability criterion (CFL condition). In contrast, an unconditionally stable implicit method 
is generally not suitable for strongly coupled problems. In the literature, many local time stepping (LTS) methods have 
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Fig. 1. Left: five elements and pre-computed update times ti . Right: flow chart of the asynchronous algorithm.

been developed. Flaherty et al. [2] developed a parallel, adaptive discontinuous Galerkin method with a local forward Euler 
scheme that relies on interpolating values in time at interfaces between time steps of different sizes. However, they only 
presented first-order results. Various local time stepping schemes for hyperbolic conservation laws were proposed [6,7]. For 
these different algorithms, local time steps are selected to be fractions of the global time step. Grote et al. [3] derived an 
explicit LTS scheme from standard explicit Runge–Kutta (RK) methods. They have proved that their scheme preserves the 
accuracy of the original RK scheme. However, their approach is applicable only in the case of two distinct regions in the 
mesh: a “coarse” region with the larger elements and a “fine” region with the smaller elements. In the fine region, the 
time step must be a fraction of the coarse time step. Recently, a new time integration approach has been introduced in [4]. 
The proposed algorithm permits the selection of independent time steps in each mesh element. However, this approach 
is only applicable to Hamiltonian systems. In [5], Omelchenko and Karimabadi considered an asynchronous approach on a 
diffusion–advection–reaction equation in one dimension. Their method is based on a discrete-event simulation. However, 
they did not present results for higher dimensions and they did not discuss the convergence rate of their method. In this 
paper we focus on the asynchronous method proposed by one of the co-author, Thomas Unfer. His method uses local 
stability criteria. It was noticed that the asynchronous scheme reduces numerical diffusion and CPU time in comparison to 
the classical scheme [9]. In [8], Unfer has also proposed an extension of the asynchronous integration procedure to higher 
order. We proved that the asynchronous scheme as it was presented in [8] is at most of order one. Hence we propose a 
new asynchronous RK2 scheme.

This paper is outlined as follows: in Section 2, we apply the asynchronous method to discretize the transport equation 
and present theoretical results for the stability and first order convergence of the asynchronous scheme. In Section 3, we 
present the asynchronous Runge–Kutta 2 (ARK2) algorithm and we assess the order of convergence via numerical simula-
tions.

2. Asynchronous scheme

The asynchronous algorithm permits the selection of independent time steps in each mesh element so that the local 
time steps do not bear an integral relation to each other. The time advance is performed by organizing computational tasks 
into a priority queue based on their pre-computed update times (see Fig. 1 left, where the superscript i in the update time 
ti denotes the order in the priority queue). To illustrate the asynchronous method, we consider the advection equation

∂u

∂t
+ ∇ · (vu) = 0, ∀(x, t) ∈ �×]0,+∞[, u(x,0) = u0(x), ∀x ∈ �, (1)

where v is a non-zero vector, � a polygonal domain in Rd (d � 1) and u0 a given initial condition. We suppose periodic 
boundary conditions.

Let T = {Ki, i = 1, . . . , N} be a partition of the domain � in N polyhedral volumes Ki . For all i ∈ [1, N], N (i) = { j, |Ki ∩
K j | �= 0} is the set of indices of neighboring volumes of Ki ; |Ki ∩ K j | denotes the (d − 1) positive measure of Ki ∩ K j . If 
j ∈N (i), we denote by ni, j the unit normal on Ki ∩ K j that points out from Ki and by Ni, j = |Ki ∩ K j |ni, j . Let N+(i) = { j ∈
N (i), v.ni, j > 0} and N−(i) = { j ∈N (i), v.ni, j < 0}.

The spatial discretization of (1) is done by the first order upwind finite volume scheme

∂ui

∂t
(t) = − 1

|Ki |

⎛
⎝ ∑

j∈N+(i)

v · Ni, jui(t) +
∑

j∈N−(i)

v · Ni, ju j(t)

⎞
⎠ = − 1

|Ki|
∑

j∈N (i)

Fi, j(t), (2)

where the density ui(t) is an approximation of 
1

|Ki |
∫
Ki

u(x, t)dx and numerical fluxes Fi, j are defined by: Fi, j(t) = v ·

Ni, jui(t), ∀ j ∈N+(i) (outflow fluxes) and Fi, j(t) = v · Ni, ju j(t), ∀ j ∈N−(i) (inflow fluxes).



A. Toumi et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 843–847 845
2.1. Asynchronous algorithm

Three main phases summarize the algorithm; see also Fig. 1 right. First, at the start-up time all densities and fluxes are 
initialized. Then, a second phase is carried out by continuously applying the following steps until the global simulation clock 
is advanced past the simulation finish time: find the most urgent cell to be refreshed by using the CFL condition, compute 
the values of the densities that are needed to compute the outflow fluxes (in the case of an upwind scheme only the current 
cell Ki and the neighbors K j , ∀ j ∈N+(i) are involved), update the values of the outflow fluxes and then compute the next 
refresh time of this cell. Finally, the third phase is to build the solution at the output time.

2.2. Properties of the asynchronous scheme

Classical estimations ensuring the order of accuracy (consistency) and stability are not directly compatible with the 
asynchronous aspect. It therefore becomes necessary to adapt the notion of consistency to this concept as well as to define 
a suitable norm to justify the stability of this approach.

In the case of an asynchronous integration in time, the solution in a given time depends on all previous times. Then, 
to prove the stability of this scheme we need to define the asynchronous infinity norm ‖ · ‖asyn,∞ by ‖utn ‖asyn,∞ :=
supi,p�n |ut p

i |.

Proposition 2.1. The asynchronous scheme is stable in the asynchronous infinity norm ‖.‖asyn,∞ under the local CFL condition on the 
time-step 	ti relative to the element Ki:

	ti �
|Ki|∑

j∈N+(i) v · Ni, j
, ∀i = 1, . . . , N. (3)

Let us recall that, on a regular rectangular grid, the classical upwind explicit finite volume scheme is stable and strongly 
consistent. On irregular meshes, first-order finite volume schemes are not strongly consistent, their truncation error is only 
O (1). These results can be easily extended to the case of the asynchronous integration in time. In the case of an explicit 
finite volume scheme on arbitrary meshes, the derivation of a priori optimal error estimates is still an open problem even 
for the scalar linear advection equation. Under some assumptions on the mesh and the scheme, an O (h1/2) convergence 
rate has been established [10]. Bouche et al. [1] studied the convergence rate of the upwind finite volume method applied 
to the linear advection equation on a polygonal domain of Rd . They construct first a set of geometric correctors that depend 
only on the mesh and on the advection vector, but not on the solutions to the advection equation. Then they proved an 
O (h) convergence rate of the explicit upwind scheme.

To prove the convergence of the asynchronous scheme, we applied the method proposed by Bouche. We first considered 
a sequence of geometric correctors in Rd , (�i)i=1,...,N as in [1]. If there exists C such that ‖�‖asyn,∞ � Ch then, we have the 
following result:

Theorem 2.1. Let u be the exact solution to (1), supposed of class C2. Assume that the mesh is regular enough to ensure that 	ti −	t j =
O (h2) for all Ki ∈ T and ∀ j ∈N (i). Under the local CFL conditions, the asynchronous upwind scheme is convergent of order one.

We proved that the asynchronous scheme is convergent in the first order. However, the approximation of order one is 
not sufficient for many applications. Hence the idea to define an asynchronous scheme of order 2. This will be discussed in 
the next section.

3. Asynchronous Runge–Kutta 2 scheme

We propose in this section an asynchronous Runge–Kutta 2 (ARK2) scheme. We suppose an arbitrary space discretization 
of a given linear partial differential equation with initial conditions but without a source term, for the sake of simplicity. 
This leads to a system of coupled ordinary differential equations

dyi

dt
(t) = Bi y(t), ∀Ki ∈ T , (4)

where yi and y are respectively vectors that contain the degrees of freedom (dofs) in the element Ki and in all the elements, 
and Bi a matrix coming from the space discretization.

For each cell, the source term depends only on the current cell, whereas the fluxes depend also on neighbors. So to 
apply the ARK2 method, we first need to split the term Bi y in three contributions: V i is a local “volume” contribution, F +

i, j

is a local “flux” contribution and F −
i, j is a “flux” contribution from the neighbor. Then (4) becomes:

dyi

dt
(t) = V i yi(t) +

∑
F +

i, j yi(t) + F −
i, j y j(t), ∀Ki ∈ T . (5)
j∈N (i)
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We denote by ym
i the approximation of yi(m 	 ti) and by 

(
�y

�t

)m

i
the approximation of 

dyi

dt
(m�ti).

3.1. Algorithm

Pre-computed update times correspond to multiples of 	ti in each Ki . The time advance is performed using a priority 
queue as explained in the beginning of Section 2; tcur is the current simulation time.

At tcur such that tcur/ 	 ti is an integer p, we have to perform the following operations.

(i) Compute the tentative dofs at tcur

ỹi(tcur) = ỹi(tpre,i) + (tcur − tpre,i)

(
� ỹ

�t

)
i
(tmid,i), tmid,i = tcur −

(
tcur − tpre,i

2

)

where tpre,i is the last time when the tentative dofs has been updated. The tentative mid-point slope is defined as 
follows(

� ỹ

�t

)
i
(tmid,i) = V i

(
yp−1

i + �ti

2

(
�y

�t

)p−1

i

)

+
∑

j∈N(i)

[
F +

i, j

(
yp−1

i + (
tmid,i, j − (p − 1)�ti

)(
�y

�t

)p−1

i

)

+ F −
i, j

(
y

n j

j + (
tmid,i, j − n j�t j

)(
�y

�t

)n j

j

)]

where n j =
⌊

tpre,i

�t j

⌋
, tmid,i, j = tcur −

(
tcur − tpre,i, j

2

)
with tpre,i, j = max(n j�t j, (p − 1)�ti).

(ii) For all the neighbors of the element i, i.e. j ∈N (i), we update the tentative values

ỹ j(tcur) = ỹ j(tpre, j) + (tcur − tpre, j)

(
� ỹ

�t

)
j
(tmid, j),

tpre, j is the last time where the tentative dofs have been updated and tmid, j is the “mid-point” time.
(iii) Affect the dofs and update the last refresh times

yp
i = ỹi(tcur), tpre,i = tcur and tpre, j = tcur, ∀ j ∈ N (i).

(iv) After all elements Ki such that tcur/�ti is an integer have been updated, update their slopes(
�y

�t

)p

i
= V i yp

i +
∑

j∈N(i)

F +
i, j yp

i + F −
i, j

(
y

n j

j + (p�ti − n j�t j)

(
�y

�t

)n j

j

)
, where n j =

⌊
tcur

�t j

⌋
.

3.2. Numerical tests

In this subsection, we verify via numerical simulations the order of convergence of the ARK2 scheme. We consider the 
one-dimensional Maxwell equation:

∂(εE)

∂t
− ∂ H

∂x
= 0,

∂(μH)

∂t
− ∂ E

∂x
= 0 (6)

and we suppose periodic boundary conditions. Spatial discretization is performed with the classical P 1-discontinuous 
Galerkin scheme. We then apply the ARK2 algorithm for several meshes.

To study the convergence rate of the asynchronous scheme, we introduce several sequences of meshes. We first consider 
meshes where the local time steps are multiple of the smallest time step (see Fig. 2 Mesh 1 with q = 4 and Mesh 2 with 
p = 4 and q = 8) before more general meshes (see Fig. 3 Mesh 3 with p = 3, q = 2 and Mesh 4 where p/q < 1 with p = 2, 
q = 3). We finally test the algorithm on a mesh where the time steps are completely independent. The positions xi of the 
vertices of this mesh follow a polynomial law with parameter α defining the slope at x = 0.5 and thus:

xi = 4(1 − α)

(
i − 1

N − 1
− 1

2

)3

+ α

(
i − 1

N − 1
− 1

2

)
+ 1

2
, N is the number of cells. (7)
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Fig. 2. In Meshes 1 (with q = 4) and 2 (with p = 4 and q = 8), the local time steps are multiple of the smallest time step.

Fig. 3. In Meshes 3 (with p = 3, q = 2) and 4 (with p = 2, q = 3), the local time steps are not multiple of the smallest time step.

Fig. 4. (Color online.) Second order ARK2 scheme for several type of meshes.

In Fig. 4, the infinity norm of the error versus the number of cells is shown for each sequence of meshes. It can be 
observed that the ARK2 is a second-order convergent scheme independent of the type of mesh.

The presented asynchronous scheme has a little impact on precision but does not influence the order of convergence. 
Moreover, comparing with the classical integration, the asynchronous scheme is effective in terms of computation time. For 
example, in the case of the polynomial mesh (7) the estimated factor of acceleration is of the order of 11. Note that in 
practical implementation, the asynchronous speed-up is generally slower than theoretically expected, mainly because the 
asynchronous scheme access the data in memory in a more random manner. This overhead depends on the implementation, 
but in our experiments we observed that it is hard to reduce by more than by a factor of three. This means that for appli-
cation with a theoretical speed-up exceeding 3, the asynchronous integration provides effective CPU speed-up. Application 
of the asynchronous scheme to nonlinear problems and theoretical study will be the subject of future works.
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