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RESUME

Dans cette courte note, nous donnons des exemples explicites en caracteristique p sur
certaines courbes projectives lisses otll, pour un fibré vectoriel semi-stable donné &, la
longeur de la filtration d’Harder-Narasimhan de F*E est plus grande que p. Cela répond
negativement a une question posée par Mehta et Pauly dans [2].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

In [2, page 2], Mehta and Pauly asked whether for a smooth projective curve over a field of characteristic p > 0 and
£ a semistable bundle on X the length of the Harder-Narasimhan filtration of F*£ is at most p. In [4, Construction 2.13],
this is answered negatively. Examples are constructed based on a result of Sun [3]. The bundles for which examples are
obtained in [4] have rank > 2p (in fact, examples are constructed for any np with n > 2) and are over curves of large genus,
since restriction theorems and Bertini’s Theorem are used. The purpose of this short note is to provide surprisingly simple
down-to-earth examples in characteristic p for certain smooth plane curves and bundles of rank p+1<r < L%j. In
characteristic 2, negative examples exist on any smooth projective curve of genus > 2. We note that our examples are only
polystable, while one should be able to obtain stable bundles using the methods outlined in [4].

1. The example

Proposition 1.1. Let X be a smooth projective curve over an algebraically closed field k of positive characteristic. Let &,i=1,...,n be
semistable rank-two bundles of slope . on X such that the F*&; split as F*&; = L; & G; with w(L;) > (G;). Assume, moreover, that
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W(Li) > p(Lipq) foralli=1,...,n—1.Then S = @}, & is semistable and F*S is unstable and its Harder-Narasimhan filtration
is:

n n n
0CL1CLi®LrC...CPLiCEPLi®GCPLi®G®n1C...CF*S.
i=1 i=1 i=1

In particular, the Harder-Narasimhan filtration of F*S has length 2n.

Proof. Clearly S is semistable. We have ©(G;) =2u — w(L;), which implies (£ (G;) < 1 (Gi41) for all i. We also have w(L;) >
n(Gj) for all i, j. Indeed, we may assume that i > j then u(L;) — u(Gj) = u(Lj) — u(G;) and by assumption wu(L;) >
M(Lj) > (Gj). Hence, u(Lj) > u(Gi).

It follows that the slopes of the quotients Q; of the filtration form a strictly decreasing sequence. As all Q; are semistable
as line bundles, this is the Harder-Narasimhan filtration of F*S. O

Example 1.2. By [1, Theorem 1| any smooth projective curve X of genus > 2 admits a semistable rank two bundle £ with
trivial determinant such that F*£ is not semistable. Then S = £ @ Oyx is a semistable vector bundle and the Harder-
Narasimhan filtration of F*S has length 3 > 2. Indeed, if 0 C £ C F*£ is a Harder-Narasimhan filtration of F*£ then
0CLCL®OxCF*S is one for F*S.

Lemma 1.3. Let X be a smooth projective curve and £ a rank 2 vector bundle on X. If £ is given by an extension 0 # ¢ € Ext' (M, L)
with deg £ < deg M and F*(c) = 0 then & is semistable.

Proof. Assume, on the contrary, that £ is unstable and let A/ denote the maximal destabilizing subbundle £. The maximal
destabilizing subbundle of F*£ = F* M & F*L is F* M. Since the Harder-Narasimhan filtration is unique and in the rank 2
case automatically strong, we must have F* M = F*N. Hence, N = M ® T for some p-torsion bundle 7.

Consider now the natural inclusion i : M ® 7 — £ and the projection p : £ — M. The Frobenius pull-back of the
composition p oi is the identity. In particular poi: M ® T — M is non-zero. Since both line bundles are of the same
degree, this map is an isomorphism. Hence, if £ is not semistable, then the sequence has to split, which contradicts the
assumption ¢ #0. O

Example 1.4. Let now p be any prime and k an algebraically closed field of characteristic p. We consider the plane curve:

X=V, (X3P +xyP 1 4yl c ]P’%.

By the Jacobian criterion, this is a smooth curve. We will construct L@J rank-two bundles of slopes —37” as in Proposi-

tion 1.1. The direct sum over at least pzi] of these bundles then constitutes the desired example.
Consider the cohomology class

X3 ;
Cc= W eH (Xy OX(_l))7

which is non-zero. Also note that its Frobenius pull-back
x3p _Xpr—l _yz3p—1 Xyp—l N zh—1 )
2pz2p yZpZZp - 72p y2p71

F*(c) =
y

is zero. Moreover, multiplication by z yields a map Ox(—1) — Ox and the induced map on cohomology maps c to y’z‘%
which is still non-zero. Let Pq,..., P3p be the (distinct) points on X where z vanishes.” In particular, the cokernel of
multiplication by z is just @?jl k(P;), where k(P;) is the skyscraper sheaf at P;.

Multiplication by z factors as

Ox(=1) —=Ox(=1+ Y}, P) ——=Ox

for any [ < 3p. Indeed, the image of the line bundle in the middle is just the sum of the image of Ox(—1) in Ox and
the preimage of Zi’:l k(P;). In particular, we get an induced factorization on cohomology and we denote the image of ¢ in
HY(X, Ox(—1+ 25-:1 P;)) by c;. Note that ¢; is non-zero, while F*(c;) is zero.

Assume now that [ is even. These cohomology classes then define extensions & as follows. Let I be the odd numbers
from 1 to [ and let | be the even numbers from 1 to . Then

2 We could also work with multiplication by x which yields one reduced point and one with multiplicity 3p — 1.



H. Brenner, A. Stdbler / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 855-857 857

1
aeH' (X, 0x(=1+ ) _k(P))) =Ext'(Ox(= Y Pj),Ox(=1+ Y _P)

i=1 jej iel

yield extensions
0——=Ox(=14+ i Pi) —=&§——Ox(— Zjej Pj)——0.

The & all have slope —37” and pulling back along Frobenius splits the above sequence. By Lemma 1.3 the & are
semistable. Hence, the & satisfy the hypothesis of Proposition 1.1, and we obtain the desired examples.
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