Algebraic geometry

On a question of Mehta and Pauly

Sur une question de Mehta et Pauly

Holger Brennera, Axel Stäblerb,1

a Universität Osnabrück, Fachbereich 6, Albrechtstr. 28a, 49069 Osnabrück, Germany
b Johannes Gutenberg-Universität Mainz, Fachbereich 8, Staudingerweg 9, 55099 Mainz, Germany

\textbf{A R T I C L E I N F O}

Article history:
Received 13 April 2015
Accepted after revision 24 June 2015
Available online 26 July 2015
Presented by Claire Voisin

\textbf{A B S T R A C T}

In this short note, we provide explicit examples in characteristic p on certain smooth projective curves where for a given semistable vector bundle \mathcal{E} the length of the Harder–Narasimhan filtration of $F^*\mathcal{E}$ is longer than p. This negatively answers a question of Mehta and Pauly raised in [2].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\textbf{R É S U M É}

Dans cette courte note, nous donnons des exemples explicites en caractéristique p sur certaines courbes projectives lisses où, pour un fibré vectoriel semi-stable donné \mathcal{E}, la longueur de la filtration de Harder–Narasimhan de $F^*\mathcal{E}$ est plus grande que p. Cela répond négativement à une question posée par Mehta et Pauly dans [2].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

In [2, page 2], Mehta and Pauly asked whether for a smooth projective curve over a field of characteristic $p > 0$ and \mathcal{E} a semistable bundle on X the length of the Harder–Narasimhan filtration of $F^*\mathcal{E}$ is at most p. In [4, Construction 2.13], this is answered negatively. Examples are constructed based on a result of Sun [3]. The bundles for which examples are obtained in [4] have rank $\geq 2p$ (in fact, examples are constructed for any np with $n \geq 2$) and are over curves of large genus, since restriction theorems and Bertini’s Theorem are used. The purpose of this short note is to provide surprisingly simple down-to-earth examples in characteristic p for certain smooth plane curves and bundles of rank $p + 1 \leq r \leq \left\lfloor \frac{3p+1}{2} \right\rfloor$. In characteristic 2, negative examples exist on any smooth projective curve of genus ≥ 2. We note that our examples are only polystable, while one should be able to obtain stable bundles using the methods outlined in [4].

1. The example

\textbf{Proposition 1.1.} Let X be a smooth projective curve over an algebraically closed field k of positive characteristic. Let \mathcal{E}_i, $i = 1, \ldots, n$ be semistable rank-two bundles of slope μ on X such that the $F^*\mathcal{E}_i$ split as $F^*\mathcal{E}_i = \mathcal{L}_i \oplus \mathcal{G}_i$ with $\mu(\mathcal{L}_i) > \mu(\mathcal{G}_i)$. Assume, moreover, that \ldots
\(\mu(L_i) > \mu(L_{i+1}) \) for all \(i = 1, \ldots, n-1 \). Then \(S = \bigoplus_{i=1}^{n} E_i \) is semistable and \(F^*S \) is unstable and its Harder–Narasimhan filtration is:

\[
0 \subset L_1 \subset L_1 \oplus L_2 \subset \cdots \subset \bigoplus_{i=1}^{n} L_i \subset \bigoplus_{i=1}^{n} L_i \oplus G_n \subset \bigoplus_{i=1}^{n} L_i \oplus G_n \oplus G_{n-1} \subset \cdots \subset F^*S.
\]

In particular, the Harder–Narasimhan filtration of \(F^*S \) has length \(2n \).

Proof. Clearly \(S \) is semistable. We have \(\mu(G_i) = 2\mu - \mu(L_i) \), which implies \(\mu(G_i) < \mu(G_{i+1}) \) for all \(i \). We also have \(\mu(L_i) > \mu(L_{i+1}) \) for all \(i, j \). Indeed, we may assume that \(i > j \) then \(\mu(L_i) - \mu(L_j) = \mu(L_j) - \mu(G_j) \) and by assumption \(\mu(L_i) > \mu(L_j) > \mu(G_j) \). Hence, \(\mu(L_i) > \mu(G_j) \).

It follows that the slopes of the quotients \(Q_i \) of the filtration form a strictly decreasing sequence. As all \(Q_i \) are semistable as line bundles, this is the Harder–Narasimhan filtration of \(F^*S \). \(\square \)

Example 1.2. By [1, Theorem 1] any smooth projective curve \(X \) of genus \(\geq 2 \) admits a semistable rank two bundle \(E \) with trivial determinant such that \(F^*E \) is not semistable. Then \(S = E \oplus O_X \) is a semistable vector bundle and the Harder–Narasimhan filtration of \(F^*S \) has length \(3 > 2 \). Indeed, if \(0 \subset L \subset F^*E \) is a Harder–Narasimhan filtration of \(F^*E \) then \(0 \subset L \subset L \oplus O_X \subset F^*S \) is one for \(F^*S \).

Lemma 1.3. Let \(X \) be a smooth projective curve and \(E \) a rank 2 vector bundle on \(X \). If \(E \) is given by an extension \(0 \neq c \in \text{Ext}^1(M, L) \) with \(\text{deg} L = \text{deg} M \) and \(F^*(c) = 0 \) then \(E \) is semistable.

Proof. Assume, on the contrary, that \(E \) is unstable and let \(\mathcal{N} \) denote the maximal destabilizing subbundle \(\mathcal{E} \). The maximal destabilizing subbundle of \(F^*E = F^*M \oplus F^*L \) is \(F^*\mathcal{N} \). Since the Harder–Narasimhan filtration is unique and in the rank 2 case automatically strong, we must have \(F^*M = F^*\mathcal{N} \). Hence, \(\mathcal{N} = M \oplus T \) for some \(p \)-torsion bundle \(T \).

Consider now the natural inclusion \(i : M \otimes T \to E \) and the projection \(p : E \to M \). The Frobenius pull-back of the composition \(p \circ i \) is the identity. In particular \(p \circ i : M \otimes T \to M \) is non-zero. Since both line bundles are of the same degree, this map is an isomorphism. Hence, if \(E \) is not semistable, then the sequence has to split, which contradicts the assumption \(c \neq 0 \). \(\square \)

Example 1.4. Let now \(p \) be any prime and \(k \) an algebraically closed field of characteristic \(p \). We consider the plane curve:

\[
X = V_+(x^{3p} + xy^{3p-1} + y^{3p-1}) \subseteq \mathbb{P}^2_k.
\]

By the Jacobian criterion, this is a smooth curve. We will construct \(\left\lfloor \frac{3p+1}{2} \right\rfloor \) rank-two bundles of slopes \(-\frac{3p}{2} \) as in Proposition 1.1. The direct sum over at least \(\frac{p+1}{2} \) of these bundles then constitutes the desired example.

Consider the cohomology class

\[
c = \frac{x^3}{yz^2} \in H^1(X, O_X(-1)),
\]

which is non-zero. Also note that its Frobenius pull-back

\[
F^*(c) = \frac{x^{2p}}{y^{2p} z^{2p}} = -\frac{xy^{3p-1} - yz^{3p-1}}{y^{2p} z^{2p}} = -\frac{xy^{p-1}}{z^{2p}} + \frac{z^{p-1}}{y^{2p-1}}
\]

is zero. Moreover, multiplication by \(z \) yields a map \(O_X(-1) \to O_X \) and the induced map on cohomology maps \(c \) to \(\frac{x^d}{y^{2p}} \), which is still non-zero. Let \(P_1, \ldots, P_{3p} \) be the (distinct) points on \(X \) where \(z \) vanishes.\(^2\) In particular, the cokernel of multiplication by \(z \) is just \(\bigoplus_{i=1}^{3p} k(P_i) \), where \(k(P_i) \) is the skyscraper sheaf at \(P_i \).

Multiplication by \(z \) factors as

\[
O_X(-1) \longrightarrow O_X(-1 + \sum_{i=1}^{p} P_i) \longrightarrow \bigoplus_{i=1}^{p} k(P_i)
\]

for any \(l \leq 3p \). Indeed, the image of the line bundle in the middle is just the sum of the image of \(O_X(-1) \) in \(O_X \) and the preimage of \(\sum_{i=1}^{p} k(P_i) \). In particular, we get an induced factorization on cohomology and we denote the image of \(c \) in \(H^1(X, O_X(-1 + \sum_{i=1}^{p} P_i)) \) by \(c_i \). Note that \(c_i \) is non-zero, while \(F^*(c_i) \) is zero.

Assume now that \(l \) is even. These cohomology classes then define extensions \(E_i \) as follows. Let \(l \) be the odd numbers from \(1 \) to \(l \) and let \(j \) be the even numbers from \(1 \) to \(l \). Then

\(^2\) We could also work with multiplication by \(x \) which yields one reduced point and one with multiplicity \(3p - 1 \).
cl ∈ H^1(X, O_X(−1 + \sum_{i=1}^l k(P_i))) = \text{Ext}^1(O_X(−\sum_{j\in J} P_j), O_X(−1 + \sum_{i\in I} P_i))

yield extensions

0 \longrightarrow O_X(−1 + \sum_{i\in I} P_i) \longrightarrow \mathcal{E}_l \longrightarrow O_X(−\sum_{j\in J} P_j) \longrightarrow 0.

The \mathcal{E}_l all have slope \(-\frac{3p}{2}\) and pulling back along Frobenius splits the above sequence. By Lemma 1.3 the \mathcal{E}_l are semistable. Hence, the \mathcal{E}_l satisfy the hypothesis of Proposition 1.1, and we obtain the desired examples.

References