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We shall present a measure theoretical approach that, together with the Kantorovich 
duality, provides an efficient tool to study the optimal transport problem. Specifically, we 
study the support of optimal plans where the cost function does not satisfy the classical 
twist condition in the two marginal problem as well as in the multi-marginal case when 
twistedness is limited to certain subsets.
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r é s u m é

Dans cet article, nous étudions le problème de transport optimal du point de vue de la 
théorie de la mesure, à l’aide de la dualité de Kantorovich. En particulier, nous étudions le 
support des plans optimaux où la fonction coût ne satisfait pas la condition de « twist »
dans le problème à deux marginales, ainsi que dans le cas multi-marginales quand la 
condition « twist » est limitée à des sous-ensembles précis.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the Monge–Kantorovich transport problem for Borel probability measures μ1, μ2, ..., μn on smooth mani-
folds X1, X2, ..., Xn . The cost function c : X1 × X2 × ... × Xn → R is bounded and continuous. Let Π(μ1, ..., μn) be the set 
of Borel probability measures on X1 × X2 × ... × Xn that have Xi -marginal μi for each i ∈ {1, 2, ..., n}. The transport cost 
associated with a transport plan π ∈ Π(μ1, ..., μn) is given by:

Ic(π) =
∫

X1×X2×...×Xn

c(x1, ..., xn)dπ.
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We consider the Monge–Kantorovich transport problem,

inf
{

Ic(π);π ∈ Π(μ1, ...,μn)
}
. (MK)

If a transport plan minimizes the cost, it will be called an optimal plan. We say that an optimal plan γ induces a Monge 
solution if it is concentrated on the graph {(x, T (x)); x ∈ X1} of a measurable map T : X1 → X2 × ... × Xn . Contrary to the 
Monge problem, the Kantorovich problem always admits solutions as soon as the cost function is a non-negative lower 
semi-continuous function (see [17] for a proof). When n = 2, a general criterion for the existence and uniqueness of an 
optimal transport map known as the twist condition dictates the map y → D1c(x, y) to be injective for fixed x ∈ X1. Under 
the twist condition and the absolute continuity of μ1, the optimal plan γ that solves the Monge–Kantorovich problem (MK)
is supported on the graph of an optimal transport map T , i.e., γ = (Id× T )#μ. For larger n, questions regarding the existence 
and uniqueness are not fully understood yet. By now, there are many interesting results for the multi-marginal problem in 
the general case as well as particular models (see for instance [3–8,10–12,15,16], the bibliography is not exhaustive). When 
n > 2, as shown in [11], the twist condition can be replaced by twistedness on c-splitting sets.

Definition 1.1. A set S ⊂ X1 × X2 × ... × Xn is a c-splitting set if there exists Borel functions ui : Xi → R such that for all 
(x1, x2, ..., xn),

n∑
i=1

ui(xi) ≤ c(x1, x2, ..., xn)

with equality whenever (x1, x2, ..., xn) ∈ S . The n-tuple (u1, ..., un) is called the c-splitting tuple for S .

In [13], for the case n = 2, the author relaxed the twist condition by a new property, i.e.,

• the generalized-twist condition: we say that c satisfies the generalized-twist condition if for any x̄1 ∈ X1 and x̄2 ∈ X2
the set L(x̄1,x̄2) := {x2 ∈ X2; D1c(x̄1, x2) = D1c(x̄1, ̄x2)} is a finite subset of X2. Moreover, if there exists m ∈ N such that 
for each x̄1 ∈ X1 and x̄2 ∈ X2 the cardinality of the set L(x̄1,x̄2) does not exceed m, then we say that c satisfies the 
m-twist condition.

Under the m-twist condition, it is shown that, for each optimal plan γ of (MK), there exist a sequence of non-negative 
measurable real functions {αi}m

i=1 on X1 with 
∑m

i=1 αi = 1, and Borel measurable maps G1, ..., Gm : X1 → X2 such that 
γ = ∑m

i=1 αi(Id × Gi)#μ.
Our aim in this work is to extend this result to the multi-marginal case. For the rest of the paper we always assume 

that c is non-negative, lower semi-continuous, 
⊕n

i=1 μi-a.e. differentiable with respect to the first variable and that Ic(γ )

is finite for some transport plan γ . We also assume that the Kantorovich dual problem admits a solution (ϕ1, ..., ϕn) such 
that ϕ1 is differentiable μ1-a.e., ϕ1(x1) + ... + ϕn(xn) ≤ c(x1, ..., xn) for all (x1, ..., xn) and∫

c dγ =
n∑

i=1

∫
Xi

ϕi(xi)dμi .

We denote by D1(c) the set of points at which c is differentiable with respect to the first variable. The generalized twist 
structure takes the following form in the multi-marginal case.

Definition 1.2. Let c be a Borel measurable function.

1. m-Twist condition: say that c is m-twisted on c-splitting sets if, for any c-splitting set S ⊂ X1 × X2 × ... × Xn and any 
(x̄1, ̄x2, ..., ̄xn) ∈ S ∩ D1(c), the cardinality of the set{

(x̄1, x2, ..., xn) ∈ S ∩ D1(c); Dx1 c(x̄1, x̄2, ..., x̄n) = Dx1 c(x̄1, x2, ..., xn)
}
,

is at most m.
2. Generalized-twist condition: say that c satisfies the generalized twist condition on c-splitting sets if, for any c-splitting 

set S ⊂ X1 × X2 × ... × Xn and any (x̄1, ̄x2, ..., ̄xn) ∈ S ∩ D1(c), the set{
(x̄1, x2, ..., xn) ∈ S ∩ D1(c); Dx1 c(x̄1, x̄2, ..., x̄n) = Dx1 c(x̄1, x2, ..., xn)

}
,

is a finite subset of S .

The following result provides a connection between the generalized twist condition and the local 1-twistedness.

Proposition 1.1. Assume that c is continuously differentiable with respect to the first variable and S is a compact c-splitting set. If c is 
locally 1-twisted on S, then c satisfies the generalized-twist condition on S.
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We now state our main result in this paper.

Theorem 1.3. Assume that the cost function c satisfies the m-twist condition on c-splitting sets and μ1 is non-atomic. Then for each 
optimal plan γ of (MK) with Supp(γ ) ⊂ D1(c), there exist k ≤ m, a sequence of non-negative measurable real functions {αi}m

i=1 on 
X1 , and Borel measurable maps G1, ..., Gk : X1 → X2 × ... × Xn such that

γ =
k∑

i=1

αi(Id × Gi)#μ, (1)

where 
∑k

i=1 αi(x) = 1 for μ1-a.e. x ∈ X1 .

As shown in [13], the most interesting examples of costs satisfying the generalized-twist condition are non-degenerate 
costs on smooth n-dimensional manifolds X and Y . Denote by D2

xyc(x0, y0) the n × n matrix of mixed second-order partial 
derivatives of the function c at the point (x0, y0). A cost c ∈ C2(X × Y ) is non-degenerate provided D2

xyc(x0, y0) is non-

singular, that is det(D2
xyc(x0, y0)) �= 0. In our forthcoming work [14], following an idea in [16] together with Proposition 1.1, 

a differential condition similar to the non-degeneracy condition (in n = 2) is derived for the multi-marginal case that guar-
anties the general twist property on c-splitting sets and, consequently, the characterization of the support of optimal plans 
due to Theorem 1.3.

In the next section, we shall discuss the key ingredients for our methodology in this work. Section 3 is devoted to the 
proof of the main results.

2. Measurable sections and extremity

Let (X, B, μ) be a finite, not necessarily complete measure space, and (Y , Σ) a measurable space. The completion of B
with respect to μ is denoted by Bμ; when necessary, we identify μ with its completion on Bμ . The push forward of the 
measure μ by a map T : (X, B, μ) → (Y , Σ) is denoted by T#μ, i.e.

T#μ(A) = μ
(
T −1(A)

)
, ∀A ∈ Σ.

Definition 2.1. Let T : X → Y be (B, Σ)-measurable and ν a positive measure on Σ . We call a map F : Y → X a 
(Σν, B)-measurable section of T if F is (Σν, B)-measurable and T ◦ F = IdY .

If X is a topological space, we denote by B(X) the set of Borel sets on X . The space of Borel probability measures on a 
topological space X is denoted by P(X). For a measurable map T : (X, B(X)) → (Y , Σ, ν) denote by M(T , ν) the set of all 
measures λ on B so that T pushes λ forward to ν , i.e.

M(T , ν) = {
λ : T#λ = ν

}
.

Evidently M(T , ν) is a convex set. A measure λ is an extreme point of M(T , ν) if the identity λ = θλ1 + (1 − θ)λ2 with 
θ ∈ (0, 1) and λ1, λ2 ∈M(T , ν) implies that λ1 = λ2. The set of extreme points of M(T , ν) is denoted by extM(T , ν).

We recall the following result from [9] in which a characterization of the set extM(T , ν) is given.

Theorem 2.2. Let (Y , Σ, ν) be a probability space, (X, B(X)) be a Hausdorff space with a Radon probability measure λ, and let 
T : X → Y be an (B(X), Σ)-measurable mapping. Assume that T is surjective and Σ is countably separated. The following conditions 
are equivalent:

(i) λ is an extreme point of M(T , ν);
(ii) there exists a (Σν, B(X))-measurable section F : Y → X of the mapping T with λ = F#ν .

By making use of the Choquet theory in the setting of noncompact sets of measures [18], each λ ∈ M(T , ν) can be 
represented as a Choquet type integral over ext M(T , ν). Denote by Σext M(T ,ν) the σ -algebra over ext M(T , ν) generated by 
the functions � → �(B), B ∈ B(X). We have the following result (see [13] for a proof).

Theorem 2.3. Let X and Y be complete separable metric spaces and ν a probability measure on B(Y ). Let T : (X, B(X)) → (Y , B(Y ))

be a surjective measurable mapping and let λ ∈ M(T , ν). Then there exists a Borel probability measure ξ on 
∑

ext M(T ,ν) such that for 
each B ∈ B(X),

λ(B) =
∫

ext M(T ,ν)

�(B)dξ(�),
(
� → �(B) is measurable

)
.
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3. Proofs

In this section, we shall proceed with the proofs of the statements in the introduction. We first state some preliminaries 
required for the proofs. Let γ be a solution of (MK) such that Supp(γ ) ⊂ D1(c). It is standard that γ ∈ Π(μ1, ..., μn) is 
non-atomic if and only if at least one μi is non-atomic (see for instance [1]). Set Y = X2 × ... × Xn . Since μ1 is non-atomic, 
it follows that the Borel measurable spaces (X1, B(X1), μ1) and (X1 × Y , B(X1 × Y ), γ ) are isomorphic. Thus, there exists 
an isomorphism T = (T1, T2, ..., Tn) from (X1, B(X1), μ1) onto (X1 × Y , B(X1 × Y ), γ ). It can be easily deduced that Ti :
X1 → Xi are surjective maps and

Ti#μ1 = μi, i = 1,2, ...,n.

Consider the convex set:

M(T1,μ1) = {
λ ∈ P(X1); T1#λ = μ1

}
,

and note that μ1 ∈M(T1, μ1). The following result is established in [13].

Lemma 3.1. Suppose F1, F2 are two distinct sections of T1. Then the set{
x ∈ X1; F1(x) = F2(x)

}
is a null set with respect to the measure μ1.

Proof of Theorem 1.3. Since μ1 ∈ M(T1, μ1), it follows from Theorem 2.3 that there exists a Borel probability measure ξ
on 

∑
ext M(T1,μ1) such that for each B ∈ B(X1),

μ(B) =
∫

ext M(T1,μ1)

�(B)dξ(�),
(
� → �(B) is measurable

)
. (2)

On the other hand, there exist functions {ϕi}n
i=1 such that ϕ1(x1) + ... +ϕn(xn) ≤ c(x1, ..., xn), ϕ1 is μ1-a.e. differentiable, 

and that∫
c dγ =

n∑
i=1

∫
Xi

ϕi(xi)dμi .

Let S be the c-splitting set generated by the n-tuple (ϕ1, ..., ϕn), that is,

S =
{

(x1, ..., xn); c(x1, ..., xn) =
n∑

i=1

ϕi(xi)

}
.

As T = (T1, T2, ..., Tn) is an isomorphism from (X1, B(X1), μ1) onto (X1 × Y , B(X1 × Y ), γ ), it follows that∫
X1

c(T1x1, T2x1, ..., Tnx1)dμ1 =
n∑

i=1

∫
X1

ϕi(Ti x1)dμ1.

from which, together with the fact that 
∑n

i=1 ϕi(xi) ≤ c(x1, ..., xn), we obtain,

c(T1x1, T2x1, ..., Tnx1) =
n∑

i=1

ϕi(Ti x1). μ1-a.e. (3)

Since ϕ1 is μ almost surely differentiable and T1#μ1 = μ1, it follows that

D1c(T1x1, T2x1, ..., Tnx1) = ∇ϕ1(T1x1) μ1-a.e. (4)

where D1c stands for the partial derivative of c with respect to the first variable. Let Aγ ∈ B(X1) be the set with μ(Aγ ) = 1
such that (3) and (4) hold for all x1 ∈ Aγ , i.e.

c(T1x1, T2x1, ..., Tnx1) =
n∑

i=1

ϕi(Ti x1) and D1c(T1x1, T2x1, ..., Tnx1) = ∇ϕ1(T1x1) ∀x1 ∈ Aγ . (5)

Since μ1(X1 \ Aγ ) = 0, it follows from (2) that
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∫
ext M(T1,μ1)

�(X1 \ Aγ )dξ(�) = μ(X1 \ Aγ ) = 0,

and therefore there exists a ξ -full measure subset Kγ of ext M(T1, μ1) such that �(X1 \ Aγ ) = 0 for all � ∈ Kγ .
For every B ∈B(X) it follows from (2) that

μ1(B) =
∫

ext M(T1,μ1)

�(B)dξ(�) =
∫

Kγ

�(B)dξ(�),

from which we obtain that μ is absolutely continuous with respect to 
∑k

i=1 �i . It follows dμ/d(
∑k

i=1 �i) = α(x) for some 
measurable non-negative function α. Assume that F1, ..., Fk are (B(X1)μ, B(X))-measurable sections of the mapping T1

with �i = Fi #μ1. Setting αi = α ◦ Fi , it follows from T1#μ1 = μ1 that 
∑k

i=1 αi(x) = 1 for μ1-a.e. x ∈ X1. It also follows from 
Corollary 6.7.6 in [2] that each Fi is μ1-a.e. equal to a (B(X1), B(X1))-measurable function still denoted by Fi . For each 
i ∈ {1, ..., k}, let Gi = (T2 ◦ Fi, ..., Tn ◦ Fi). We now show that γ = ∑k

i=1 αi(Id × Gi)#μ. For each bounded continuous function 
f : X1 × Y → R it follows that

∫
X1×Y

f (x, y)dγ =
∫
X1

f (T1x1, T2x1, ..., Tnx1)dμ1 =
k∑

i=1

∫
X1

α(x1) f (T1x1, T2x1, ..., Tnx1)d�i

=
k∑

i=1

∫
X1

α
(

Fi(x1)
)

f
(
T1 ◦ Fi(x1), T2 ◦ Fi(x1), ..., Tn ◦ Fi(x1)

)
dμ1

=
k∑

i=1

∫
X1

αi(x) f
(
x1, Gi(x1)

)
dμ1.

Therefore, γ = ∑k
i=1 αi(Id × Gi)#μ. This completes the proof. �

We conclude this section by proving the generalized-twist property for the locally 1-twisted costs.

Proof of Proposition 1.1. Assume that S ⊂ X1 × ... × Xn is a c-splitting set. Fix (x̄1, ..., ̄xn) ∈ S . We need to show that the set

L = {
(x̄1, x2, ..., xn) ∈ S; D1c(x̄1, x̄2, ..., x̄n) = D1c(x̄1, x2, ...xn)

}
is finite. If L is not finite, there exists an infinitely countable subset {(x̄1, xk

2, ...x
k
n)}k∈N ⊂ L. Since S is compact, then the 

sequence {(x̄1, xk
2, ...x

k
n)}k∈N has an accumulation point (x̄1, x0

2, ...x
0
n) ∈ S and there exists a subsequence still denoted by 

{(x̄1, xk
2, ...x

k
n)}k∈N such that xk

i → x0
i as k → ∞ for i = 2, ..., n. Since D1c is continuous, it follows that (x̄1, x0

2, ...x
0
n) ∈ L. 

Since c is locally 1-twisted on S , this leads to a contradiction as (x̄1, x0
2, ...x

0
n) is an accumulation point of the sequence 

{(x̄1, xk
2, ...x

k
n)}k∈N and

D1c
(
x̄1, x0

2, ...x
0
n

) = D1c
(
x̄1, xk

2, ...x
k
n

)
, ∀k ∈ N.

This completes the proof. �
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