Mathematical analysis/Partial differential equations

Multi-marginal Monge-Kantorovich transport problems: A characterization of solutions

Problèmes de transport multi-marginal de Monge-Kantorovich :
 Une caractérisation des solutions

Abbas Moameni ${ }^{1}$
School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, Canada

A R T I CLE IN F O

Article history:

Received 22 May 2014
Accepted after revision 8 October 2014
Available online 23 October 2014
Presented by the Editorial Board

Abstract

We shall present a measure theoretical approach that, together with the Kantorovich duality, provides an efficient tool to study the optimal transport problem. Specifically, we study the support of optimal plans where the cost function does not satisfy the classical twist condition in the two marginal problem as well as in the multi-marginal case when twistedness is limited to certain subsets.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Dans cet article, nous étudions le problème de transport optimal du point de vue de la théorie de la mesure, à l'aide de la dualité de Kantorovich. En particulier, nous étudions le support des plans optimaux où la fonction coût ne satisfait pas la condition de "twist» dans le problème à deux marginales, ainsi que dans le cas multi-marginales quand la condition "twist» est limitée à des sous-ensembles précis.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the Monge-Kantorovich transport problem for Borel probability measures $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ on smooth manifolds $X_{1}, X_{2}, \ldots, X_{n}$. The cost function $c: X_{1} \times X_{2} \times \ldots \times X_{n} \rightarrow \mathbb{R}$ is bounded and continuous. Let $\Pi\left(\mu_{1}, \ldots, \mu_{n}\right)$ be the set of Borel probability measures on $X_{1} \times X_{2} \times \ldots \times X_{n}$ that have X_{i}-marginal μ_{i} for each $i \in\{1,2, \ldots, n\}$. The transport cost associated with a transport plan $\pi \in \Pi\left(\mu_{1}, \ldots, \mu_{n}\right)$ is given by:

$$
I_{c}(\pi)=\int_{X_{1} \times X_{2} \times \ldots \times X_{n}} c\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} \pi .
$$

[^0]We consider the Monge-Kantorovich transport problem,

$$
\begin{equation*}
\inf \left\{I_{c}(\pi) ; \pi \in \Pi\left(\mu_{1}, \ldots, \mu_{n}\right)\right\} . \tag{MK}
\end{equation*}
$$

If a transport plan minimizes the cost, it will be called an optimal plan. We say that an optimal plan γ induces a Monge solution if it is concentrated on the graph $\left\{(x, T(x)) ; x \in X_{1}\right\}$ of a measurable map $T: X_{1} \rightarrow X_{2} \times \ldots \times X_{n}$. Contrary to the Monge problem, the Kantorovich problem always admits solutions as soon as the cost function is a non-negative lower semi-continuous function (see [17] for a proof). When $n=2$, a general criterion for the existence and uniqueness of an optimal transport map known as the twist condition dictates the map $y \rightarrow D_{1} c(x, y)$ to be injective for fixed $x \in X_{1}$. Under the twist condition and the absolute continuity of μ_{1}, the optimal plan γ that solves the Monge-Kantorovich problem (MK) is supported on the graph of an optimal transport map T, i.e., $\gamma=(\operatorname{Id} \times T)_{\#} \mu$. For larger n, questions regarding the existence and uniqueness are not fully understood yet. By now, there are many interesting results for the multi-marginal problem in the general case as well as particular models (see for instance [3-8,10-12,15,16], the bibliography is not exhaustive). When $n>2$, as shown in [11], the twist condition can be replaced by twistedness on c-splitting sets.

Definition 1.1. A set $S \subset X_{1} \times X_{2} \times \ldots \times X_{n}$ is a c-splitting set if there exists Borel functions $u_{i}: X_{i} \rightarrow \mathbb{R}$ such that for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,

$$
\sum_{i=1}^{n} u_{i}\left(x_{i}\right) \leq c\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

with equality whenever $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S$. The n-tuple $\left(u_{1}, \ldots, u_{n}\right)$ is called the c-splitting tuple for S.
In [13], for the case $n=2$, the author relaxed the twist condition by a new property, i.e.,

- the generalized-twist condition: we say that c satisfies the generalized-twist condition if for any $\bar{x}_{1} \in X_{1}$ and $\bar{x}_{2} \in X_{2}$ the set $L_{\left(\bar{x}_{1}, \bar{x}_{2}\right)}:=\left\{x_{2} \in X_{2} ; D_{1} c\left(\bar{x}_{1}, x_{2}\right)=D_{1} c\left(\bar{x}_{1}, \bar{x}_{2}\right)\right\}$ is a finite subset of X_{2}. Moreover, if there exists $m \in \mathbb{N}$ such that for each $\bar{x}_{1} \in X_{1}$ and $\bar{x}_{2} \in X_{2}$ the cardinality of the set $L_{\left(\bar{x}_{1}, \bar{x}_{2}\right)}$ does not exceed m, then we say that c satisfies the m-twist condition.

Under the m-twist condition, it is shown that, for each optimal plan γ of ($M K$), there exist a sequence of non-negative measurable real functions $\left\{\alpha_{i}\right\}_{i=1}^{m}$ on X_{1} with $\sum_{i=1}^{m} \alpha_{i}=1$, and Borel measurable maps $G_{1}, \ldots, G_{m}: X_{1} \rightarrow X_{2}$ such that $\gamma=\sum_{i=1}^{m} \alpha_{i}\left(\mathrm{Id} \times G_{i}\right)_{\#} \mu$.

Our aim in this work is to extend this result to the multi-marginal case. For the rest of the paper we always assume that c is non-negative, lower semi-continuous, $\bigoplus_{i=1}^{n} \mu_{i}$-a.e. differentiable with respect to the first variable and that $I_{c}(\gamma)$ is finite for some transport plan γ. We also assume that the Kantorovich dual problem admits a solution $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ such that φ_{1} is differentiable μ_{1}-a.e., $\varphi_{1}\left(x_{1}\right)+\ldots+\varphi_{n}\left(x_{n}\right) \leq c\left(x_{1}, \ldots, x_{n}\right)$ for all $\left(x_{1}, \ldots, x_{n}\right)$ and

$$
\int c \mathrm{~d} \gamma=\sum_{i=1}^{n} \int_{X_{i}} \varphi_{i}\left(x_{i}\right) \mathrm{d} \mu_{i}
$$

We denote by $D_{1}(c)$ the set of points at which c is differentiable with respect to the first variable. The generalized twist structure takes the following form in the multi-marginal case.

Definition 1.2. Let c be a Borel measurable function.

1. m-Twist condition: say that c is m-twisted on c-splitting sets if, for any c-splitting set $S \subset X_{1} \times X_{2} \times \ldots \times X_{n}$ and any $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right) \in S \cap D_{1}(c)$, the cardinality of the set

$$
\left\{\left(\bar{x}_{1}, x_{2}, \ldots, x_{n}\right) \in S \cap D_{1}(c) ; D_{x_{1}} c\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)=D_{x_{1}} c\left(\bar{x}_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is at most m.
2. Generalized-twist condition: say that c satisfies the generalized twist condition on c-splitting sets if, for any c-splitting set $S \subset X_{1} \times X_{2} \times \ldots \times X_{n}$ and any $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right) \in S \cap D_{1}(c)$, the set

$$
\left\{\left(\bar{x}_{1}, x_{2}, \ldots, x_{n}\right) \in S \cap D_{1}(c) ; D_{x_{1}} c\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)=D_{x_{1}} c\left(\bar{x}_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is a finite subset of S.
The following result provides a connection between the generalized twist condition and the local 1-twistedness.
Proposition 1.1. Assume that c is continuously differentiable with respect to the first variable and S is a compact c-splitting set. If c is locally 1-twisted on S, then c satisfies the generalized-twist condition on S.

We now state our main result in this paper.
Theorem 1.3. Assume that the cost function c satisfies the m-twist condition on c-splitting sets and μ_{1} is non-atomic. Then for each optimal plan γ of $(M K)$ with $\operatorname{Supp}(\gamma) \subset D_{1}(c)$, there exist $k \leq m$, a sequence of non-negative measurable real functions $\left\{\alpha_{i}\right\}_{i=1}^{m}$ on X_{1}, and Borel measurable maps $G_{1}, \ldots, G_{k}: X_{1} \rightarrow X_{2} \times \ldots \times X_{n}$ such that

$$
\begin{equation*}
\gamma=\sum_{i=1}^{k} \alpha_{i}\left(\operatorname{Id} \times G_{i}\right)_{\#} \mu \tag{1}
\end{equation*}
$$

where $\sum_{i=1}^{k} \alpha_{i}(x)=1$ for μ_{1}-a.e. $x \in X_{1}$.
As shown in [13], the most interesting examples of costs satisfying the generalized-twist condition are non-degenerate costs on smooth n-dimensional manifolds X and Y. Denote by $D_{x y}^{2} c\left(x_{0}, y_{0}\right)$ the $n \times n$ matrix of mixed second-order partial derivatives of the function c at the point $\left(x_{0}, y_{0}\right)$. A cost $c \in C^{2}(X \times Y)$ is non-degenerate provided $D_{x y}^{2} c\left(x_{0}, y_{0}\right)$ is nonsingular, that is $\operatorname{det}\left(D_{x y}^{2} c\left(x_{0}, y_{0}\right)\right) \neq 0$. In our forthcoming work [14], following an idea in [16] together with Proposition 1.1, a differential condition similar to the non-degeneracy condition (in $n=2$) is derived for the multi-marginal case that guaranties the general twist property on c-splitting sets and, consequently, the characterization of the support of optimal plans due to Theorem 1.3.

In the next section, we shall discuss the key ingredients for our methodology in this work. Section 3 is devoted to the proof of the main results.

2. Measurable sections and extremity

Let (X, \mathcal{B}, μ) be a finite, not necessarily complete measure space, and (Y, Σ) a measurable space. The completion of \mathcal{B} with respect to μ is denoted by \mathcal{B}_{μ}; when necessary, we identify μ with its completion on \mathcal{B}_{μ}. The push forward of the measure μ by a map $T:(X, \mathcal{B}, \mu) \rightarrow(Y, \Sigma)$ is denoted by $T_{\#} \mu$, i.e.

$$
T_{\#} \mu(A)=\mu\left(T^{-1}(A)\right), \quad \forall A \in \Sigma
$$

Definition 2.1. Let $T: X \rightarrow Y$ be (\mathcal{B}, Σ)-measurable and v a positive measure on Σ. We call a map $F: Y \rightarrow X$ a $\left(\Sigma_{\nu}, \mathcal{B}\right)$-measurable section of T if F is $\left(\Sigma_{v}, \mathcal{B}\right)$-measurable and $T \circ F=\operatorname{Id}_{Y}$.

If X is a topological space, we denote by $\mathcal{B}(X)$ the set of Borel sets on X. The space of Borel probability measures on a topological space X is denoted by $\mathcal{P}(X)$. For a measurable map $T:(X, \mathcal{B}(X)) \rightarrow(Y, \Sigma, v)$ denote by $\mathcal{M}(T, v)$ the set of all measures λ on \mathcal{B} so that T pushes λ forward to ν, i.e.

$$
\mathcal{M}(T, v)=\left\{\lambda: T_{\#} \lambda=\nu\right\} .
$$

Evidently $\mathcal{M}(T, \nu)$ is a convex set. A measure λ is an extreme point of $\mathcal{M}(T, v)$ if the identity $\lambda=\theta \lambda_{1}+(1-\theta) \lambda_{2}$ with $\theta \in(0,1)$ and $\lambda_{1}, \lambda_{2} \in \mathcal{M}(T, v)$ implies that $\lambda_{1}=\lambda_{2}$. The set of extreme points of $\mathcal{M}(T, v)$ is denoted by ext $\mathcal{M}(T, v)$.

We recall the following result from [9] in which a characterization of the set ext $\mathcal{M}(T, v)$ is given.
Theorem 2.2. Let (Y, Σ, ν) be a probability space, $(X, \mathcal{B}(X))$ be a Hausdorff space with a Radon probability measure λ, and let $T: X \rightarrow Y$ be an $(\mathcal{B}(X), \Sigma)$-measurable mapping. Assume that T is surjective and Σ is countably separated. The following conditions are equivalent:
(i) λ is an extreme point of $M(T, v)$;
(ii) there exists $a\left(\Sigma_{\nu}, \mathcal{B}(X)\right)$-measurable section $F: Y \rightarrow X$ of the mapping T with $\lambda=F_{\#} \nu$.

By making use of the Choquet theory in the setting of noncompact sets of measures [18], each $\lambda \in M(T, \nu)$ can be represented as a Choquet type integral over ext $M(T, \nu)$. Denote by $\Sigma_{\text {ext } M(T, v)}$ the σ-algebra over ext $M(T, v)$ generated by the functions $\varrho \rightarrow \varrho(B), B \in \mathcal{B}(X)$. We have the following result (see [13] for a proof).

Theorem 2.3. Let X and Y be complete separable metric spaces and ν a probability measure on $\mathcal{B}(Y)$. Let $T:(X, \mathcal{B}(X)) \rightarrow(Y, \mathcal{B}(Y))$ be a surjective measurable mapping and let $\lambda \in M(T, v)$. Then there exists a Borel probability measure ξ on $\sum_{\text {ext } M(T, \nu)}$ such that for each $B \in \mathcal{B}(X)$,

$$
\lambda(B)=\int_{\operatorname{ext} M(T, v)} \varrho(B) \mathrm{d} \xi(\varrho), \quad(\varrho \rightarrow \varrho(B) \text { is measurable }) .
$$

3. Proofs

In this section, we shall proceed with the proofs of the statements in the introduction. We first state some preliminaries required for the proofs. Let γ be a solution of $(M K)$ such that $\operatorname{Supp}(\gamma) \subset D_{1}(c)$. It is standard that $\gamma \in \Pi\left(\mu_{1}, \ldots, \mu_{n}\right)$ is non-atomic if and only if at least one μ_{i} is non-atomic (see for instance [1]). Set $Y=X_{2} \times \ldots \times X_{n}$. Since μ_{1} is non-atomic, it follows that the Borel measurable spaces $\left(X_{1}, \mathcal{B}\left(X_{1}\right), \mu_{1}\right)$ and $\left(X_{1} \times Y, \mathcal{B}\left(X_{1} \times Y\right), \gamma\right)$ are isomorphic. Thus, there exists an isomorphism $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ from $\left(X_{1}, \mathcal{B}\left(X_{1}\right), \mu_{1}\right)$ onto ($\left.X_{1} \times Y, \mathcal{B}\left(X_{1} \times Y\right), \gamma\right)$. It can be easily deduced that T_{i} : $X_{1} \rightarrow X_{i}$ are surjective maps and

$$
T_{i} \# \mu_{1}=\mu_{i}, \quad i=1,2, \ldots, n
$$

Consider the convex set:

$$
\mathcal{M}\left(T_{1}, \mu_{1}\right)=\left\{\lambda \in \mathcal{P}\left(X_{1}\right) ; T_{1} \# \lambda=\mu_{1}\right\}
$$

and note that $\mu_{1} \in \mathcal{M}\left(T_{1}, \mu_{1}\right)$. The following result is established in [13].
Lemma 3.1. Suppose F_{1}, F_{2} are two distinct sections of T_{1}. Then the set

$$
\left\{x \in X_{1} ; F_{1}(x)=F_{2}(x)\right\}
$$

is a null set with respect to the measure μ_{1}.
Proof of Theorem 1.3. Since $\mu_{1} \in \mathcal{M}\left(T_{1}, \mu_{1}\right)$, it follows from Theorem 2.3 that there exists a Borel probability measure ξ on $\sum_{\text {ext } M\left(T_{1}, \mu_{1}\right)}$ such that for each $B \in \mathcal{B}\left(X_{1}\right)$,

$$
\begin{equation*}
\mu(B)=\int_{\operatorname{ext} M\left(T_{1}, \mu_{1}\right)} \varrho(B) \mathrm{d} \xi(\varrho), \quad(\varrho \rightarrow \varrho(B) \text { is measurable }) \tag{2}
\end{equation*}
$$

On the other hand, there exist functions $\left\{\varphi_{i}\right\}_{i=1}^{n}$ such that $\varphi_{1}\left(x_{1}\right)+\ldots+\varphi_{n}\left(x_{n}\right) \leq c\left(x_{1}, \ldots, x_{n}\right), \varphi_{1}$ is μ_{1}-a.e. differentiable, and that

$$
\int c \mathrm{~d} \gamma=\sum_{i=1}^{n} \int_{X_{i}} \varphi_{i}\left(x_{i}\right) \mathrm{d} \mu_{i}
$$

Let S be the c-splitting set generated by the n-tuple $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, that is,

$$
S=\left\{\left(x_{1}, \ldots, x_{n}\right) ; c\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \varphi_{i}\left(x_{i}\right)\right\}
$$

As $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an isomorphism from $\left(X_{1}, \mathcal{B}\left(X_{1}\right), \mu_{1}\right)$ onto $\left(X_{1} \times Y, \mathcal{B}\left(X_{1} \times Y\right), \gamma\right)$, it follows that

$$
\int_{X_{1}} c\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right) \mathrm{d} \mu_{1}=\sum_{i=1}^{n} \int_{X_{1}} \varphi_{i}\left(T_{i} x_{1}\right) \mathrm{d} \mu_{1}
$$

from which, together with the fact that $\sum_{i=1}^{n} \varphi_{i}\left(x_{i}\right) \leq c\left(x_{1}, \ldots, x_{n}\right)$, we obtain,

$$
\begin{equation*}
c\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right)=\sum_{i=1}^{n} \varphi_{i}\left(T_{i} x_{1}\right) . \quad \mu_{1} \text {-a.e. } \tag{3}
\end{equation*}
$$

Since φ_{1} is μ almost surely differentiable and $T_{1 \#} \mu_{1}=\mu_{1}$, it follows that

$$
\begin{equation*}
D_{1} c\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right)=\nabla \varphi_{1}\left(T_{1} x_{1}\right) \quad \mu_{1} \text {-a.e. } \tag{4}
\end{equation*}
$$

where $D_{1} c$ stands for the partial derivative of c with respect to the first variable. Let $A_{\gamma} \in \mathcal{B}\left(X_{1}\right)$ be the set with $\mu\left(A_{\gamma}\right)=1$ such that (3) and (4) hold for all $x_{1} \in A_{\gamma}$, i.e.

$$
\begin{equation*}
c\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right)=\sum_{i=1}^{n} \varphi_{i}\left(T_{i} x_{1}\right) \quad \text { and } \quad D_{1} c\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right)=\nabla \varphi_{1}\left(T_{1} x_{1}\right) \quad \forall x_{1} \in A_{\gamma} \tag{5}
\end{equation*}
$$

Since $\mu_{1}\left(X_{1} \backslash A_{\gamma}\right)=0$, it follows from (2) that

$$
\int_{\operatorname{ext} M\left(T_{1}, \mu_{1}\right)} \varrho\left(X_{1} \backslash A_{\gamma}\right) \mathrm{d} \xi(\varrho)=\mu\left(X_{1} \backslash A_{\gamma}\right)=0
$$

and therefore there exists a ξ-full measure subset K_{γ} of ext $M\left(T_{1}, \mu_{1}\right)$ such that $\varrho\left(X_{1} \backslash A_{\gamma}\right)=0$ for all $\varrho \in K_{\gamma}$.
For every $B \in \mathcal{B}(X)$ it follows from (2) that

$$
\mu_{1}(B)=\int_{\operatorname{ext} M\left(T_{1}, \mu_{1}\right)} \varrho(B) \mathrm{d} \xi(\varrho)=\int_{K_{\gamma}} \varrho(B) \mathrm{d} \xi(\varrho)
$$

from which we obtain that μ is absolutely continuous with respect to $\sum_{i=1}^{k} \varrho_{i}$. It follows $\mathrm{d} \mu / \mathrm{d}\left(\sum_{i=1}^{k} \varrho_{i}\right)=\alpha(x)$ for some measurable non-negative function α. Assume that F_{1}, \ldots, F_{k} are $\left(\mathcal{B}\left(X_{1}\right)_{\mu}, \mathcal{B}(X)\right)$-measurable sections of the mapping T_{1} with $\varrho_{i}=F_{i \#} \mu_{1}$. Setting $\alpha_{i}=\alpha \circ F_{i}$, it follows from $T_{1 \#} \mu_{1}=\mu_{1}$ that $\sum_{i=1}^{k} \alpha_{i}(x)=1$ for μ_{1}-a.e. $x \in X_{1}$. It also follows from Corollary 6.7.6 in [2] that each F_{i} is μ_{1}-a.e. equal to a $\left(\mathcal{B}\left(X_{1}\right), \mathcal{B}\left(X_{1}\right)\right)$-measurable function still denoted by F_{i}. For each $i \in\{1, \ldots, k\}$, let $G_{i}=\left(T_{2} \circ F_{i}, \ldots, T_{n} \circ F_{i}\right)$. We now show that $\gamma=\sum_{i=1}^{k} \alpha_{i}\left(\operatorname{Id} \times G_{i}\right)_{\#} \mu$. For each bounded continuous function $f: X_{1} \times Y \rightarrow \mathbb{R}$ it follows that

$$
\begin{aligned}
\int_{X_{1} \times Y} f(x, y) \mathrm{d} \gamma=\int_{X_{1}} f\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right) \mathrm{d} \mu_{1} & =\sum_{i=1}^{k} \int_{X_{1}} \alpha\left(x_{1}\right) f\left(T_{1} x_{1}, T_{2} x_{1}, \ldots, T_{n} x_{1}\right) \mathrm{d} \varrho_{i} \\
& =\sum_{i=1}^{k} \int_{X_{1}} \alpha\left(F_{i}\left(x_{1}\right)\right) f\left(T_{1} \circ F_{i}\left(x_{1}\right), T_{2} \circ F_{i}\left(x_{1}\right), \ldots, T_{n} \circ F_{i}\left(x_{1}\right)\right) \mathrm{d} \mu_{1} \\
& =\sum_{i=1}^{k} \int_{X_{1}} \alpha_{i}(x) f\left(x_{1}, G_{i}\left(x_{1}\right)\right) \mathrm{d} \mu_{1} .
\end{aligned}
$$

Therefore, $\gamma=\sum_{i=1}^{k} \alpha_{i}\left(\operatorname{Id} \times G_{i}\right)_{\#} \mu$. This completes the proof.
We conclude this section by proving the generalized-twist property for the locally 1 -twisted costs.
Proof of Proposition 1.1. Assume that $S \subset X_{1} \times \ldots \times X_{n}$ is a c-splitting set. Fix $\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in S$. We need to show that the set

$$
L=\left\{\left(\bar{x}_{1}, x_{2}, \ldots, x_{n}\right) \in S ; D_{1} c\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)=D_{1} c\left(\bar{x}_{1}, x_{2}, \ldots x_{n}\right)\right\}
$$

is finite. If L is not finite, there exists an infinitely countable subset $\left\{\left(\bar{x}_{1}, x_{2}^{k}, \ldots x_{n}^{k}\right)\right\}_{k \in \mathbb{N}} \subset L$. Since S is compact, then the sequence $\left\{\left(\bar{x}_{1}, x_{2}^{k}, \ldots x_{n}^{k}\right)\right\}_{k \in \mathbb{N}}$ has an accumulation point $\left(\bar{x}_{1}, x_{2}^{0}, \ldots x_{n}^{0}\right) \in S$ and there exists a subsequence still denoted by $\left\{\left(\bar{x}_{1}, x_{2}^{k}, \ldots x_{n}^{k}\right)\right\}_{k \in \mathbb{N}}$ such that $x_{i}^{k} \rightarrow x_{i}^{0}$ as $k \rightarrow \infty$ for $i=2, \ldots, n$. Since $D_{1} c$ is continuous, it follows that $\left(\bar{x}_{1}, x_{2}^{0}, \ldots x_{n}^{0}\right) \in L$. Since c is locally 1 -twisted on S, this leads to a contradiction as ($\bar{x}_{1}, x_{2}^{0}, \ldots x_{n}^{0}$) is an accumulation point of the sequence $\left\{\left(\bar{x}_{1}, x_{2}^{k}, \ldots x_{n}^{k}\right)\right\}_{k \in \mathbb{N}}$ and

$$
D_{1} c\left(\bar{x}_{1}, x_{2}^{0}, \ldots x_{n}^{0}\right)=D_{1} c\left(\bar{x}_{1}, x_{2}^{k}, \ldots x_{n}^{k}\right), \quad \forall k \in \mathbb{N} .
$$

This completes the proof.

References

[1] K.P.S. Bhaskara Rao, M. Bhaskara Rao, A remark on nonatomic measures, Ann. Math. Stat. 43 (1) (1972) 369-370.
[2] V.I. Bogachev, Measure Theory, vols. I, II, Springer-Verlag, Berlin, 2007.
[3] G. Buttazzo, L. De Pascale, P. Gori-Giorgi, Optimal transport formulation of electronic density-functional theory, Phys. Rev. A 85 (Jun 2012) 062502.
[4] G. Carlier, On a class of multidimensional optimal transportation problems, J. Convex Anal. 10 (2) (2003) 517-529.
[5] G. Carlier, B. Nazaret, Optimal transportation for the determinant, ESAIM Control Optim. Calc. Var. 14 (4) (2008) 678-698.
[6] P.-A. Chiappori, R.J. McCann, L.P. Nesheim, Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness, Econom. Theory 42 (2010) 317-354.
[7] W. Gangbo, A. Swiech, Optimal maps for the multidimensional mongekantorovich problem, Commun. Pure Appl. Math. 51 (1) (1998) 23-45.
[8] N. Ghoussoub, A. Moameni, A self-dual polar factorization for vector fields, Commun. Pure Appl. Math. 66 (6) (2013) 905-933.
[9] S. Graf, Induced σ-homomorphisms and a parametrization of measurable sections via extremal preimage measures, Math. Ann. 247 (1) (1980) 67-80.
[10] H. Heinich, Probleme de Monge pour n probabilité, C. R. Acad. Sci. Paris, Ser. I 334 (9) (2002) 793-795.
[11] Y.-H. Kim, B. Pass, A general condition for Monge solutions in the multi-marginal optimal transport problem, arXiv:1307.6293.
[12] V. Levin, Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem, Set-Valued Anal. 7 (1) (1999) 7-32.
[13] A. Moameni, A characterization for solutions of the Monge-Kantorovich mass transport problem, submitted for publication.
[14] A. Moameni, B. Pass, Solutions to multi-marginal optimal transport problems supported on several graphs, in preparation.
[15] B. Pass, Uniqueness and Monge solutions in the multimarginal optimal transportation problem, SIAM J. Math. Anal. 43 (6) (2011) $2758-2775$.
[16] B. Pass, On the local structure of optimal measures in the multimarginal optimal transportation problem, Calc. Var. Partial Differ. Equ. 43 (2012) 529-536.
[17] C. Villani, Optimal Transport, Old and New, Grundlehren Math. Wiss., Springer-Verlag, Berlin, 2009.
[18] H. von Weizsäcker, G. Winkler, Integral representation in the set of solutions of a generalized moment problem, Math. Ann. 246 (1) (1979/1980) 23-32.

[^0]: E-mail address: momeni@math.carleton.ca.
 ${ }^{1}$ Supported by the Natural Sciences and Engineering Research Council of Canada, Grant number 315920.
 http://dx.doi.org/10.1016/j.crma.2014.10.004
 1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

