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We study the essential spectrum of N-body Hamiltonians with potentials defined by 
functions that have radial limits at infinity. The results extend the HVZ theorem which 
describes the essential spectrum of usual N-body Hamiltonians. The proof is based on 
a careful study of algebras generated by potentials and their cross-products. We also 
describe the topology on the spectrum of these algebras, thus extending to our setting a 
result of A. Mageira. Our techniques apply to more general classes of potentials associated 
with translation invariant algebras of bounded uniformly continuous functions on a finite-
dimensional vector space X .
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r é s u m é

Nous étudions le spectre essentiel des hamiltoniens des systèmes à N corps avec potentiels 
définis par des fonctions qui ont des limites radiales à l’infini. Les résultats étendent le 
théorème HVZ, qui décrit le spectre essentiel des hamiltoniens des systèmes à N corps 
usuels. La preuve de notre théorème principal est basée sur une étude approfondie des 
algèbres générées par les potentiels avec des limites radiales à l’infini et de leurs produits 
croisés. Nous décrivons également la topologie sur le spectre de ces algèbres, étendant 
ainsi à notre cas un résultat de A. Mageira. Nos techniques s’appliquent à des classes 
plus générales de potentiels associées à des algèbres de fonctions uniformément continues 
bornées invariantes par translation.
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Soit X un espace vectoriel réel de dimension finie et SX := (X � {0})/R+ la sphère à l’infini de X . On dit qu’une fonction 
v : X →C a des limites radiales uniformes à l’infini si v(â) := limr→∞v(ra) existe uniformément en â ∈ SX . Soit V Y : X/Y →R

une fonction borélienne ayant des limites radiales uniformes à l’infini, pour chaque sous-espace linéaire Y ⊂ X . Nous sup-
posons V Y = 0, sauf pour un nombre fini d’espaces Y . On note πY la surjection canonique X → X/Y et on garde la notation 
V Y pour la fonction V Y ◦ πY . Dans cet article, nous utilisons des produits croisés de C∗-algèbres pour étudier le spectre 
essentiel des opérateurs de la forme H := h(P ) + ∑

Y V Y . Ici, h : X∗ → [0, ∞[ est une fonction continue et propre et P est 
l’observable moment (formellement P = −i∇). Soit v : X → C et a 	= 0 tel que limr→∞v(ra + x) existe pour tout x ∈ X . Cette 
limite est une fonction de x ∈ X , qui ne dépend que de la classe α = â de a dans SX , que nous noterons τα(v). Par exemple, 
si v = V Y avec V Y comme plus haut, alors τα(V Y ) = V Y si α ⊂ Y et τ (V Y ) = V Y (πY (α)) ∈ R si α 	⊂ Y , où π(α) ∈ SX/Y est 
naturellement défini. Plus tard (voir le Théorème 3.1), nous définirons τα(S) pour une classe générale d’opérateurs S , en 
particulier pour S = H , ce qui donnera une nouvelle signification à la définition de τα .

Nous énonçons maintenant un cas particulier de notre résultat principal : si les fonctions V Y : X/Y →R sont bornées et ont 
des limites radiales uniformes à l’infini et si, pour chaque α ∈ SX , on pose τα(H) = h(P ) + ∑

Y ⊃α V Y + ∑
Y 	⊃α V Y (πY (α)), alors le 

spectre essentiel de H est σess(H) = ⋃
α∈SX σ(τα(H)).

1. Introduction

Let X be a finite dimensional real vector space and, for each linear subspace Y of X , let V Y : X/Y → R be a Borel 
function. We assume V Y = 0, except for a finite number of Y . We keep the notation V Y for the function on X given 
by V Y ◦ πY , where πY : X → X/Y is the natural map. In this paper, we use crossed-products of C∗-algebras to study 
the essential spectrum of Hamiltonians of the form H := h(P ) + ∑

Y V Y , under certain conditions on the potentials V Y . 
Here h : X∗ → [0, ∞[ is a continuous, proper function and P is the momentum observable (recall that proper means that 
lim|k|→∞h(k) = +∞). More precisely, h(P ) = F−1MhF , where F : L2(X) → L2(X∗) is the Fourier transform and Mh is 
the operator of multiplication by h (formally P = −i∇). Operators of this form cover the Hamiltonians that are currently 
the most interesting (from a physical point of view) Hamiltonians of N-body systems. Here are two main examples. In a 
generalized version of the non-relativistic case, a scalar product is given on X , so, by taking h(ξ) = |ξ |2, we get h(P ) = Δ, 
the positive Laplacian. In the simplest relativistic case, X = (R3)N and, writing the momentum P = (P1, . . . , P N), we have 
h(P ) = ∑N

k=1(P 2
k + m2

k )1/2 for some real numbers mk . We refer to [3] for a thorough introduction to the subject and study 
of these systems.

Let SX := (X � {0})/R+ be the sphere at infinity of X , i.e. the set of all half-lines â := R+a. A function v : X → C is said 
to have uniform radial limits at infinity if v(â) := limr→∞v(ra) exists uniformly in â ∈ SX . From the definition of the topology 
on SX , we get v(â) = limr→∞v(ra + x), ∀x ∈ X . More generally, we are interested in functions v such that limr→∞v(ra + x)
exists for all x ∈ X . The limit may depend on x and defines a function τα(v) : X → C, where α := â. For example, let us 
consider v = V Y . Then τα(V Y )(x) = limr→∞V Y (rπY (a) +πY (x)). In particular, τα(V Y ) = V Y whenever α := â ⊂ Y (i.e. a ∈ Y ). 
On the other hand, if V Y : X/Y → C has uniform radial limits at infinity and â = α 	⊂ Y , then πY (α) := R+πY (a) ∈ SX/Y is 
well defined and τα(V Y )(x) = V Y (πY (α)) turns out to be a constant.

Theorem 1.1. Let V Y : X/Y → R be bounded with uniform radial limits at infinity. If α ∈ SX set

τα(H) = h(P ) +
∑

Y

τα(V Y ) = h(P ) +
∑

Y ⊃α

V Y +
∑

Y 	⊃α

V Y
(
πY (α)

)
. (1)

Then σ(τα(H)) = [cα, ∞) for some real cα and σess(H) = ⋃
α∈SX σ(τα(H)) = [infα cα, ∞).

Here 
⋃

α is the closure of the union. Sometimes the union is already closed [11]. Unbounded potentials are considered in 
Theorem 3.2. If all the radial limits are zero, which is the case of the usual N-body potentials, then the terms corresponding 
to α 	⊂ Y are dropped in Eq. (1). Consequently, if h(P ) = Δ is the non-relativistic kinetic energy, we recover the Hunziker, van 
Winter, Zhislin (HVZ) theorem. Descriptions of the essential spectrum of various classes of self-adjoint operators in terms 
of limits at infinity of translates of the operators have already been obtained before, see for example [7,12,8] (in historical 
order). Our approach is based on the “localization at infinity” technique developed in [5,6] in the context of crossed-product 
C∗-algebras.

Let us sketch the main idea of this approach. Let Cu
b (X) be the algebra of bounded uniformly continuous functions, 

C0(X) the ideal of functions vanishing at infinity, and C(X+) = C + C0(X). Consider a translation invariant C∗-subalgebra 
A ⊂ Cu

b (X) containing C(X+) and let Â be its character space. Note that Â is a compact topological space that naturally 
contains X as an open dense subset and δ(A) = Â \ X can be thought of as a boundary of X at infinity. Recall that a 
self-adjoint operator H on a Hilbert space H is said to be affiliated to a C∗-algebra A of operators on H if one has 
(H + ı)−1 ∈ A . Then with each self-adjoint operator H affiliated to the crossed product A � X of A by the action of X , 
one may associate a family of self-adjoint operators H	 affiliated to A � X indexed by the characters 	 ∈ δ(A). This family 
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completely describes the image of H (in the sense of affiliated operators) in the quotient of A � X with respect to the 
ideal of compact operators. In particular, the essential spectrum of H is the closure of the union of the spectra of the 
operators H	 . These operators are the localizations at infinity of H , more precisely, H	 is the localization of H at point 	 .

Once chosen the algebra A, in order to use these techniques of this paper, we also need: (1) to have a good description 
of the character space of the Abelian algebra A, and (2) to have an efficient criterion for affiliation to the crossed product 
A � X . We also indicate how to achieve (1) and (2).

2. Crossed products and localizations at infinity

For p ∈ X∗ and q ∈ X let (S p f )(x) = ei〈x|p〉 f (x) and (Tq f )(q) = f (x + q). We say that A ∈ B(L2(X)) has the position-
momentum limit property if limp→0 ‖[S p, A]‖ = 0 and limq→0 ‖(Tq − 1)A(∗)‖ = 0 (where A(∗) means that the relation holds 
for A and A∗). The set of such operators is a C∗-algebra equal to the crossed product Cu

b (X) � X [5]. Note that if A is a 
translation invariant C∗-subalgebra of Cu

b (X), then there is a natural realization of the abstract crossed product A � X as a 
C∗-algebra of operators on L2(X) and we do not distinguish the two algebras. We describe this concrete version of A � X
below.

If ϕ : X → C and ψ : X∗ → C are measurable functions, then ϕ(Q ) and ψ(P ) are the operators on L2(X) defined 
as follows: ϕ(Q ) := Mφ acts as multiplication by ϕ and ψ(P ) = F−1MψF , where F is the Fourier transform L2(X) →
L2(X∗) and Mψ is the operator of multiplication by ψ . Then ψ �→ ψ(P ) is an isomorphism between C0(X∗) and the group 
C∗-algebra C∗(X) and A � X is the norm closed linear space of bounded operators on L2(X) generated by the products 
ϕ(Q )ψ(P ) with ϕ ∈ A and ψ ∈ C0(X∗). In particular, A � X consists of operators that have the position-momentum limit 
property.

We recall the definition of localizations at infinity for such operators. Assume C(X+) ⊂A, so Â is a compactification of X
and δ(A) = Â \ X is a compact. If q ∈ X and ϕ is a function on X then Tqϕ is its translation by q. We extend this definition 
of Tq by replacing q ∈ X with 	 ∈ Â: (T	ϕ)(x) = 	(Txϕ), for any ϕ ∈ A, 	 ∈ Â, and, x ∈ X . It is clear that T	ϕ ∈ Cu

b (X)

and that its definition coincides with the previous one if 	 = q ∈ X . Moreover, we also get “translations at infinity” of 
ϕ ∈ A by elements 	 ∈ δ(A); note however that such a translation does not belong to A in general. Also, the function 
	 �→ T	ϕ ∈ Cu

b (X) defined on Â is continuous if Cu
b (X) is equipped with the topology of local uniform convergence, hence 

T	ϕ = limq→	 Tqϕ in this topology for any 	 ∈ δ(A). If A is an operator on L2(X), let τq(A) = Tq AT ∗
q be its translation 

by q ∈ X . Clearly τq(ϕ(Q )) = (Tqϕ)(Q ). If A ∈ A � X , then we may also consider “translations at infinity” by elements of 
the boundary δ(A) of X in Â and we get a useful characterization of the compact operators. The following are mainly 
consequences of [6, Theorem 1.15]:

(i) For each 	 ∈ Â, there is a unique morphism τ	 : A � X → Cu
b (X) � X such that τ	(ϕ(Q )ψ(P )) = (T	ϕ)(Q )ψ(P ), 

ϕ ∈ Cu
b (X), ψ ∈ C0(X). (ii)

⋂
	∈δ(A) kerτ	 = C0(X) � X ≡ K (X) = ideal of compact operators on L2(X). (iii) If H is a 

self-adjoint operator on L2(X) affiliated to A then for each 	 ∈ δ(A) the limit τ	(H) := s-limq→	 Tq H T ∗
q exists and 

σess(H) = ⋃
	∈δ(A)σ (τ	(H)).

To be precise, the last strong limit means: τ	 (H) is a self-adjoint operator (not necessarily densely defined) on L2(X) and 
s-limq→	 θ(Tq H T ∗

q ) = θ(τ	(H)) for all θ ∈ C0(R). It is clear that in the last three statements above one may replace δ(A) by 
a subset π if for each A ∈ A � X we have: τ	(A) = 0 ∀	 ∈ π ⇒ τ	(A) = 0 ∀	 ∈ δ(A). In the case of groupoid (pseudo)dif-
ferential algebras (that is, when Â is a manifold with corners), the morphisms τ	 can be defined using restrictions to fibers, 
as in [9], and the last three statements above (i)–(iii) remain valid.

3. Main results

As a warm-up and in order to introduce some general notation, we treat first the two-body case, where complete results 
may be obtained by direct arguments. The algebra of interactions in the standard two-body case is C(X+), and hence the 
Hamiltonian algebra is

C
(

X+)
� X = C� X + C0(X)� X = C∗(X) + K (X) (2)

where the sums are direct. Thus C(X+) � X/K (X) = C∗(X), which finishes the theory. Another elementary case, which 
has been considered as an example in [5], is X = R with C(R+) replaced by the algebra C(R) of continuous functions that 
have limits (distinct in general) at ±∞. Then there is no natural direct sum decomposition of C(R) �R as in (2), but one 
has, by standard arguments, C(R) � R/K (R) � C∗(R) ⊕ C∗(R). Our purpose in this section is to extend this equation to 
arbitrary X .

Let C(X) be the closure in Cb(X) of the subalgebra of functions homogeneous of degree zero outside a compact set. 
Then C(X) = {u ∈ C(X) | limλ→+∞u(λa) exists uniformly in â ∈ SX }, where, we recall, â := R+a and SX := (X � {0})/R+ , so 
â ∈ SX . As a set, the character space of C(X) can be identified with the disjoint union X = X ∪ SX . The topology induced by 
the character space on X is the usual one and the intersections with X of the neighborhoods of some α ∈ SX are the sets 
that contain a truncated cone C such that there is a ∈ α such λa ∈ C if λ ≥ 1. The set of such subsets is a filter α̃ on X and, 
if Y is a Hausdorff space and u : X → Y , then limα̃ u = y means that u−1(V ) ∈ α̃ for any neighborhood V of u. We shall 
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write limx→αu(x) instead of limα̃ u. We have that C(X) is a translation invariant C∗-subalgebra of Cu
b (X) and so the crossed 

product C(X) � X is well defined. We have the following explicit description of this algebra.

Proposition 3.1. The algebra C(X) � X acting on L2(X) consists of bounded operators A that have the position-momentum limit 
property and are such that the limit τα(A) = s-lima→α Ta AT ∗

a exists for each α = â ∈ SX . If A ∈ C(X) � X and α ∈ SX , then τα(A) ∈
C∗(X) and τ (A) : α �→ τα(A) is norm continuous. The map τ : C(X) � X → C(SX ) ⊗ C∗(X) is a surjective morphism whose kernel 
is the set of compact operators on L2(X), which gives C(X) � X/K (X) ∼= C(SX ) ⊗ C∗(X). If H is a self-adjoint operator affiliated to 
C(X) � X then τα(H) = s-lima→α Ta H T ∗

a exists for all α ∈ SX and σess(H) = ⋃
α σ (τα(H)).

In the next two examples H = h(P ) + V with h : X∗ → [0, ∞[ continuous and proper. We denote by | · | a fixed norm on 
X∗ and by Hs we denote the usual Sobolev spaces on X (s ∈R).

Example 1. Let V be a bounded symmetric operator satisfying: (1) limp→0 ‖[S p, V ]‖ = 0 and (2) the limit τα(V ) =
s-lima→α Ta V T ∗

a exists for each α ∈ SX . Then H is affiliated to C(X) � X and τα(H) = h(P ) + τα(V ). Moreover, if V is 
a function, then τα(V ) is a number, but in general we have τα(V ) = vα(P ) for some function vα ∈ Cu

b (X∗).

Example 2. Assume that h is locally Lipschitz and that there exist c, s > 0 such that, for all p with |p| > 1, |∇h(p)| ≤ c(1 +
h(p)) and c−1|p|s ≤ (1 + h(p))1/2 ≤ c|p|s . Let V :Hs →H−s such that ±V ≤ μh(P ) + ν for some numbers μ, ν with μ < 1
and satisfying the next two conditions: (1) limp→0‖[S p, V ]‖Hs→H−s = 0, (2) ∀α ∈ SX the limit τα(V ) = s-lima→α Ta V T ∗

a
exists strongly in B(Hs, H−s). Then h(P ) + V and h(P ) +τα(V ) are symmetric operators Hs →H−s that induce self-adjoint 
operators H and τα(H) in L2(X) affiliated to C(X) � X and σess(H) = ⋃

α σ (τα(H)).

We now treat the N-body case. We first indicate a general way of constructing N-body Hamiltonians. For each linear sub-
space Y ⊂ X , let A(X/Y ) ⊂ Cu

b (X/Y ) be a translation invariant C∗-subalgebra containing C0(X/Y ) with A(X/X) =A(0) = C. 
We embed A(X/Y ) ⊂ Cu

b (X) as usual by identifying v with v ◦ πY . Then the C∗-algebra A generated by these algebras is a 
translation invariant C∗-subalgebra of Cu

b (X) containing C(X+) and thus we may consider the crossed product A � X which 
is equal to the C∗-algebra generated by the crossed products A(X/Y ) � X . The operators affiliated to A � X are N-body 
Hamiltonians. The standard N-body algebra corresponds to the minimal choice A(X/Y ) = C0(X/Y ) and has remarkable 
properties, which makes its study relatively easy (it is graded by the lattice of subspaces of X). Our purpose in this paper 
is to study what could arguably be considered to be the simplest extension of the classical N-body obtained by choosing 
A(X/Y ) = C(X/Y ) for all Y . The next more general case would correspond to the choice A(X/Y ) = V(X/Y ) (slowly oscil-
lating functions, i.e. the closure in sup norm of the set of bounded functions of class C1 with derivatives tending to zero at 
infinity).

Definition 3.2. Let E(X) be the C∗-subalgebra of Cu
b (X) generated by 

⋃
Y C(X/Y ).

Clearly E(X) is a translation invariant C∗-subalgebra of Cu
b (X) containing C(X+) := C0(X) +C. If Y is a linear subspace of 

X then the C∗-algebra E(X/Y ) ⊂ Cu
b (X/Y ) is well defined and naturally embedded in E(X): it is the C∗-algebra generated by ⋃

Z⊃Y C(X/Z). We have C = E(0) = E(X/X) ⊂ E(X/Y ) ⊂ E(X/Z) ⊂ E(X). If α ∈ SX , we shall denote by abuse of notation 
X/α be the quotient X/[α] of X by the subspace [α] := Rα generated by α and let us set πα = π[α] . It is clear that 
τα(u)(x) = limr→+∞u(ra + x) exists ∀u ∈ E(X) and that the resulting function τα(u) belongs to E(X). The map τα is an 
endomorphism of E(X) and a linear projection of E(X) onto the C∗-subalgebra E(X/α).

If α ∈ SX and β ∈ SX/α , then β generates a one-dimensional linear subspace [β] := Rβ ⊂ X/α, as above, and hence 
π−1

α ([β]) is a two-dimensional subspace of X that we shall denote [α, β]. We shall identify (X/α)/β with X/[α, β]. Then 
we have two idempotent morphisms τα : E(X) → E(X/α) and τβ : E(X/α) → E(X/[α, β]). Thus τβτα : E(X) → E(X/[α, β])
is an idempotent morphism. This construction extends in an obvious way to families −→α = (α1, . . . , αn) with n ≤ dim X and 
α1 ∈ SX , α2 ∈ SX/α1 , α3 ∈ SX/[α1,α2] , . . . (we allow n = 0 and denote A the set of all such families). The endomorphism τ−→α
of E(X) is defined by induction: τ−→α = ταn . . . τα1 . We also define [α1, α2, . . . , αn] by induction, so this is an n-dimensional 
subspace of X associated with (α1, α2, . . . , αn) and we denote X/ −→α the quotient of X with respect to it. Thus τ−→α is an 
endomorphism of E(X) and a projection of E(X) onto E(X/ −→α).

Proposition 3.3. If −→α ∈ A and a ∈ X/ −→α, then 	(u) = (τ−→αu)(a) defines a character of E(X). Conversely, each character of E(X) is of 
this form.

Remark 1. A natural Abelian C∗-algebra in the present context is the set R(X) of all bounded uniformly continuous func-
tions v : X → C such that limr→∞ v(ra + x) exists locally uniformly in x ∈ X for each a ∈ X . It would be interesting to find 
an explicit description of its spectrum.

This description of the spectrum of E(X) extends [10]. We now state our main results.
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Theorem 3.1. Let H be a self-adjoint operator on L2(X) affiliated to E(X) � X. Then for any a ∈ X \{0} the limit s-limr→+∞ Tra H T ∗
ra =:

τâ(H) exists and σess(H) = ⋃
α∈SX σ(τα(H)).

Theorem 3.2. Let h be as in Example 2 and V = ∑
V Y with V Y : Hs → H−s symmetric operators such that V Y = 0 but for a finite 

number of Y and satisfying: (i) ∃μY , νY ≥ 0 with 
∑

Y μY < 1 such that ±V Y ≤ μY h(P ) + νY , (ii) limp→0 ‖[S p, V Y ]‖Hs→H−s = 0, 
(iii) [T y, V Y ] = 0 for all y ∈ Y , (iv) τα(V Y ) := s-lima→α Ta V Y T ∗

a exists in B(Hs, H−s) for all α ∈ SX/Y . Then the maps Hs → H−s

given by h(P ) + V and h(P ) + ∑
Y τα(V Y ) induce self-adjoint operators H and τα(H) in L2(X) affiliated to E (X) and σess(H) =⋃

α∈SX σ(τα(H)).

Example 3. Using [2], we also obtain that Theorem 3.2 covers uniformly elliptic operators of the form H = ∑
|k|,|�|≤s Pkak� P � , 

where ak� are finite sums of functions of the form vY ◦πY with vY : X/Y → R bounded measurable such that limz→α vY (z)
exists uniformly in α ∈ SX/Y . The fact that we allow ak� to be only bounded measurable for |k| = |�| = s is not trivial.

In addition to the above-mentioned results, we also use general results on cross-product C∗-algebras, their ideals, and 
their representations [4,13]. The maximal ideal spectrum of the algebra E(X) is of independent interest and can be used to 
study the regularity properties of the eigenvalues of the N-body Hamiltonian [1]. Its relation to the constructions of Vasy 
in [14] will be studied elsewhere.
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[3] J. Dereziński, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
[4] T. Fack, G. Skandalis, Sur les représentations et idéaux de la C∗-algèbre d’un feuilletage, J. Oper. Theory 8 (1) (1982) 95–129.
[5] V. Georgescu, A. Iftimovici, Crossed products of C∗-algebras and spectral analysis of quantum Hamiltonians, Commun. Math. Phys. 228 (3) (2002) 

519–560.
[6] V. Georgescu, A. Iftimovici, Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory, Rev. Math. Phys. 18 (4) (2006) 

417–483.
[7] B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble) 

38 (2) (1988) 95–112.
[8] Y. Last, B. Simon, The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math. 98 (2006) 183–220.
[9] R. Lauter, B. Monthubert, V. Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math. 5 (2000) 625–655 (electronic).

[10] A. Mageira, Graded C∗-algebras, J. Funct. Anal. 254 (6) (2008) 1683–1701.
[11] V. Nistor, N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators (in final preparation).
[12] V. Rabinovich, S. Roch, B. Silbermann, Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, vol. 150, 

Birkhäuser Verlag, Basel, Switzerland, 2004.
[13] J. Renault, A Groupoid Approach to C∗-Algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980.
[14] A. Vasy, Propagation of singularities in many-body scattering, Ann. Sci. Éc. Norm. Super. (4) 34 (3) (2001) 313–402.

http://refhub.elsevier.com/S1631-073X(14)00236-2/bib41434Es1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib444731s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib446572657A696E736B692D476572617264s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib536B616E64616C6973s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib474932s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib474932s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib474933s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib474933s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib48656C666665722D4D6F68616D6564s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib48656C666665722D4D6F68616D6564s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib4C6153s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib4C4D4E31s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib4D616765697261s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib52525332303034s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib52525332303034s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib52656E61756C74s1
http://refhub.elsevier.com/S1631-073X(14)00236-2/bib56617379526567s1

	The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions
	Version française abrégée
	1 Introduction
	2 Crossed products and localizations at inﬁnity
	3 Main results
	Acknowledgements
	References


