

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

CrossMark

Functional analysis/Mathematical physics

The essential spectrum of *N*-body systems with asymptotically homogeneous order-zero interactions

Le spectre essentiel des systèmes à N-corps avec interactions asymptotiquement homogènes d'ordre zéro

Vladimir Georgescu^a, Victor Nistor^{b,c}

^a Département de mathématiques, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France

^b Université de Lorraine, UFR MIM, île du Saulcy, CS 50128, 57045 Metz cedex 01, France

^c Pennsylvania State University, Mathematics Department, University Park, PA 16802, USA

ARTICLE INFO

Article history: Received 5 July 2014 Accepted after revision 15 September 2014 Available online 23 October 2014

Presented by the Editorial Board

ABSTRACT

We study the essential spectrum of *N*-body Hamiltonians with potentials defined by functions that have radial limits at infinity. The results extend the HVZ theorem which describes the essential spectrum of usual *N*-body Hamiltonians. The proof is based on a careful study of algebras generated by potentials and their cross-products. We also describe the topology on the spectrum of these algebras, thus extending to our setting a result of A. Mageira. Our techniques apply to more general classes of potentials associated with translation invariant algebras of bounded uniformly continuous functions on a finite-dimensional vector space *X*.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous étudions le spectre essentiel des hamiltoniens des systèmes à N corps avec potentiels définis par des fonctions qui ont des limites radiales à l'infini. Les résultats étendent le théorème HVZ, qui décrit le spectre essentiel des hamiltoniens des systèmes à N corps usuels. La preuve de notre théorème principal est basée sur une étude approfondie des algèbres générées par les potentiels avec des limites radiales à l'infini et de leurs produits croisés. Nous décrivons également la topologie sur le spectre de ces algèbres, étendant ainsi à notre cas un résultat de A. Mageira. Nos techniques s'appliquent à des classes plus générales de potentiels associées à des algèbres de fonctions uniformément continues bornées invariantes par translation.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail addresses: vladimir.georgescu@math.cnrs.fr (V. Georgescu), victor.nistor@univ-lorraine.fr (V. Nistor).

http://dx.doi.org/10.1016/j.crma.2014.09.029

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit X un espace vectoriel réel de dimension finie et $\mathbb{S}_X := (X \setminus \{0\})/\mathbb{R}_+$ *la sphère à l'infini de X*. On dit qu'une fonction $v : X \to \mathbb{C}$ *a des limites radiales uniformes à l'infini* si $v(\hat{a}) := \lim_{r \to \infty} v(ra)$ existe uniformément en $\hat{a} \in \mathbb{S}_X$. Soit $V_Y : X/Y \to \mathbb{R}$ une fonction borélienne ayant des limites radiales uniformes à l'infini, pour chaque sous-espace linéaire $Y \subset X$. Nous supposons $V_Y = 0$, sauf pour un nombre fini d'espaces Y. On note π_Y la surjection canonique $X \to X/Y$ et on garde la notation V_Y pour la fonction $V_Y \circ \pi_Y$. Dans cet article, nous utilisons des produits croisés de C^* -algèbres pour étudier le spectre essentiel des opérateurs de la forme $H := h(P) + \sum_Y V_Y$. Ici, $h : X^* \to [0, \infty[$ est une fonction continue et propre et P est l'observable moment (formellement $P = -i\nabla$). Soit $v : X \to \mathbb{C}$ et $a \neq 0$ tel que $\lim_{r \to \infty} v(ra + x)$ existe pour tout $x \in X$. Cette limite est une fonction de $x \in X$, qui ne dépend que de la classe $\alpha = \hat{a}$ de a dans \mathbb{S}_X , que nous noterons $\tau_\alpha(v)$. Par exemple, si $v = V_Y$ avec V_Y comme plus haut, alors $\tau_\alpha(V_Y) = V_Y$ si $\alpha \subset Y$ et $\tau(V_Y) = V_Y(\pi_Y(\alpha)) \in \mathbb{R}$ si $\alpha \not\subset Y$, où $\pi(\alpha) \in \mathbb{S}_{X/Y}$ est naturellement défini. Plus tard (voir le Théorème 3.1), nous définirons $\tau_\alpha(S)$ pour une classe générale d'opérateurs S, en particulier pour S = H, ce qui donnera une nouvelle signification à la définition de τ_α .

Nous énonçons maintenant un cas particulier de notre résultat principal : si les fonctions $V_Y : X/Y \to \mathbb{R}$ sont bornées et ont des limites radiales uniformes à l'infini et si, pour chaque $\alpha \in \mathbb{S}_X$, on pose $\tau_{\alpha}(H) = h(P) + \sum_{Y \supset \alpha} V_Y + \sum_{Y \not\supset \alpha} V_Y(\pi_Y(\alpha))$, alors le spectre essentiel de H est $\sigma_{ess}(H) = \bigcup_{\alpha \in \mathbb{S}_X} \sigma(\tau_{\alpha}(H))$.

1. Introduction

Let X be a finite dimensional real vector space and, for each linear subspace Y of X, let $V_Y : X/Y \to \mathbb{R}$ be a Borel function. We assume $V_Y = 0$, except for a finite number of Y. We keep the notation V_Y for the function on X given by $V_Y \circ \pi_Y$, where $\pi_Y : X \to X/Y$ is the natural map. In this paper, we use crossed-products of C^* -algebras to study the essential spectrum of Hamiltonians of the form $H := h(P) + \sum_Y V_Y$, under certain conditions on the potentials V_Y . Here $h : X^* \to [0, \infty[$ is a continuous, proper function and P is the momentum observable (recall that *proper* means that $\lim_{|k|\to\infty}h(k) = +\infty$). More precisely, $h(P) = \mathcal{F}^{-1}M_h\mathcal{F}$, where $\mathcal{F} : L^2(X) \to L^2(X^*)$ is the Fourier transform and M_h is the operator of multiplication by h (formally $P = -i\nabla$). Operators of this form cover the Hamiltonians that are currently the most interesting (from a physical point of view) Hamiltonians of N-body systems. Here are two main examples. In a generalized version of the non-relativistic case, a scalar product is given on X, so, by taking $h(\xi) = |\xi|^2$, we get $h(P) = \Delta$, the positive Laplacian. In the simplest relativistic case, $X = (\mathbb{R}^3)^N$ and, writing the momentum $P = (P_1, \ldots, P_N)$, we have $h(P) = \sum_{k=1}^N (P_k^2 + m_k^2)^{1/2}$ for some real numbers m_k . We refer to [3] for a thorough introduction to the subject and study of these systems.

Let $\mathbb{S}_X := (X \setminus \{0\})/\mathbb{R}_+$ be the sphere at infinity of *X*, i.e. the set of all half-lines $\hat{a} := \mathbb{R}_+ a$. A function $v : X \to \mathbb{C}$ is said to have uniform radial limits at infinity if $v(\hat{a}) := \lim_{r \to \infty} v(ra)$ exists uniformly in $\hat{a} \in \mathbb{S}_X$. From the definition of the topology on \mathbb{S}_X , we get $v(\hat{a}) = \lim_{r \to \infty} v(ra + x)$, $\forall x \in X$. More generally, we are interested in functions v such that $\lim_{r \to \infty} v(ra + x)$ exists for all $x \in X$. The limit may depend on x and defines a function $\tau_\alpha(v) : X \to \mathbb{C}$, where $\alpha := \hat{a}$. For example, let us consider $v = V_Y$. Then $\tau_\alpha(V_Y)(x) = \lim_{r \to \infty} V_Y(r\pi_Y(a) + \pi_Y(x))$. In particular, $\tau_\alpha(V_Y) = V_Y$ whenever $\alpha := \hat{a} \subset Y$ (i.e. $a \in Y$). On the other hand, if $V_Y : X/Y \to \mathbb{C}$ has uniform radial limits at infinity and $\hat{a} = \alpha \not\subset Y$, then $\pi_Y(\alpha) := \mathbb{R}_+ \pi_Y(a) \in \mathbb{S}_{X/Y}$ is well defined and $\tau_\alpha(V_Y)(x) = V_Y(\pi_Y(\alpha))$ turns out to be a *constant*.

Theorem 1.1. Let $V_Y : X/Y \to \mathbb{R}$ be bounded with uniform radial limits at infinity. If $\alpha \in \mathbb{S}_X$ set

$$\tau_{\alpha}(H) = h(P) + \sum_{Y} \tau_{\alpha}(V_{Y}) = h(P) + \sum_{Y \supset \alpha} V_{Y} + \sum_{Y \not\supset \alpha} V_{Y} (\pi_{Y}(\alpha)).$$
(1)

Then $\sigma(\tau_{\alpha}(H)) = [c_{\alpha}, \infty)$ for some real c_{α} and $\sigma_{ess}(H) = \bigcup_{\alpha \in \mathbb{S}_{X}} \sigma(\tau_{\alpha}(H)) = [\inf_{\alpha} c_{\alpha}, \infty).$

Here $\overline{\bigcup}_{\alpha}$ is the closure of the union. Sometimes the union is already closed [11]. Unbounded potentials are considered in Theorem 3.2. If all the radial limits are zero, which is the case of the usual *N*-body potentials, then the terms corresponding to $\alpha \not\subset Y$ are dropped in Eq. (1). Consequently, if $h(P) = \Delta$ is the non-relativistic kinetic energy, we recover the Hunziker, van Winter, Zhislin (HVZ) theorem. Descriptions of the essential spectrum of various classes of self-adjoint operators in terms of limits at infinity of translates of the operators have already been obtained before, see for example [7,12,8] (in historical order). Our approach is based on the "localization at infinity" technique developed in [5,6] in the context of crossed-product *C**-algebras.

Let us sketch the main idea of this approach. Let $C_b^u(X)$ be the algebra of bounded uniformly continuous functions, $C_0(X)$ the ideal of functions vanishing at infinity, and $C(X^+) = \mathbb{C} + C_0(X)$. Consider a translation invariant C^* -subalgebra $\mathcal{A} \subset C_b^u(X)$ containing $C(X^+)$ and let $\hat{\mathcal{A}}$ be its character space. Note that $\hat{\mathcal{A}}$ is a compact topological space that naturally contains X as an open dense subset and $\delta(\mathcal{A}) = \hat{\mathcal{A}} \setminus X$ can be thought of as a boundary of X at infinity. Recall that a self-adjoint operator H on a Hilbert space \mathcal{H} is said to be *affiliated* to a C^* -algebra \mathscr{A} of operators on \mathcal{H} if one has $(H + \iota)^{-1} \in \mathscr{A}$. Then with each self-adjoint operators H_x affiliated to $\mathcal{A} \rtimes X$ indexed by the characters $x \in \delta(\mathcal{A})$. This family completely describes the image of *H* (in the sense of affiliated operators) in the quotient of $A \rtimes X$ with respect to the ideal of compact operators. In particular, the essential spectrum of *H* is the closure of the union of the spectra of the operators H_{χ} . These operators are the *localizations at infinity of H*, more precisely, H_{χ} is the localization of *H* at point χ .

Once chosen the algebra A, in order to use these techniques of this paper, we also need: (1) to have a good description of the character space of the Abelian algebra A, and (2) to have an efficient criterion for affiliation to the crossed product $A \rtimes X$. We also indicate how to achieve (1) and (2).

2. Crossed products and localizations at infinity

For $p \in X^*$ and $q \in X$ let $(S_p f)(x) = e^{i(x|p)} f(x)$ and $(T_q f)(q) = f(x + q)$. We say that $A \in \mathcal{B}(L^2(X))$ has the positionmomentum limit property if $\lim_{p\to 0} \|[S_p, A]\| = 0$ and $\lim_{q\to 0} \|(T_q - 1)A^{(*)}\| = 0$ (where $A^{(*)}$ means that the relation holds for A and A^*). The set of such operators is a C^* -algebra equal to the crossed product $\mathcal{C}_b^u(X) \rtimes X$ [5]. Note that if A is a translation invariant C^* -subalgebra of $\mathcal{C}_b^u(X)$, then there is a natural realization of the abstract crossed product $A \rtimes X$ as a C^* -algebra of operators on $L^2(X)$ and we do not distinguish the two algebras. We describe this concrete version of $A \rtimes X$ below.

If $\varphi : X \to \mathbb{C}$ and $\psi : X^* \to \mathbb{C}$ are measurable functions, then $\varphi(Q)$ and $\psi(P)$ are the operators on $L^2(X)$ defined as follows: $\varphi(Q) := M_{\phi}$ acts as multiplication by φ and $\psi(P) = \mathcal{F}^{-1}M_{\psi}\mathcal{F}$, where \mathcal{F} is the Fourier transform $L^2(X) \to L^2(X^*)$ and M_{ψ} is the operator of multiplication by ψ . Then $\psi \mapsto \psi(P)$ is an isomorphism between $\mathcal{C}_0(X^*)$ and the group C^* -algebra $C^*(X)$ and $\mathcal{A} \rtimes X$ is the norm closed linear space of bounded operators on $L^2(X)$ generated by the products $\varphi(Q)\psi(P)$ with $\varphi \in \mathcal{A}$ and $\psi \in \mathcal{C}_0(X^*)$. In particular, $\mathcal{A} \rtimes X$ consists of operators that have the position-momentum limit property.

We recall the definition of localizations at infinity for such operators. Assume $C(X^+) \subset A$, so \hat{A} is a compactification of X and $\delta(A) = \hat{A} \setminus X$ is a compact. If $q \in X$ and φ is a function on X then $T_q\varphi$ is its translation by q. We extend this definition of T_q by replacing $q \in X$ with $x \in \hat{A}$: $(T_x\varphi)(x) = x(T_x\varphi)$, for any $\varphi \in A$, $x \in \hat{A}$, and, $x \in X$. It is clear that $T_x\varphi \in C_b^u(X)$ and that its definition coincides with the previous one if $x = q \in X$. Moreover, we also get "translations at infinity" of $\varphi \in A$ by elements $x \in \delta(A)$; note however that such a translation does not belong to A in general. Also, the function $x \mapsto T_x\varphi \in C_b^u(X)$ defined on \hat{A} is continuous if $C_b^u(X)$ is equipped with the topology of local uniform convergence, hence $T_x\varphi = \lim_{q\to x} T_q\varphi$ in this topology for any $x \in \delta(A)$. If A is an operator on $L^2(X)$, let $\tau_q(A) = T_qAT_q^*$ be its translation by $q \in X$. Clearly $\tau_q(\varphi(Q)) = (T_q\varphi)(Q)$. If $A \in A \rtimes X$, then we may also consider "translations at infinity" by elements of the boundary $\delta(A)$ of X in \hat{A} and we get a useful characterization of the compact operators. The following are mainly consequences of [6, Theorem 1.15]:

(i) For each $x \in \hat{A}$, there is a unique morphism $\tau_x : A \rtimes X \to C_b^u(X) \rtimes X$ such that $\tau_x(\varphi(Q)\psi(P)) = (T_x\varphi)(Q)\psi(P)$, $\varphi \in C_b^u(X), \psi \in C_0(X)$. (ii) $\bigcap_{x \in \delta(A)} \ker \tau_x = C_0(X) \rtimes X \equiv \mathscr{K}(X) = \text{ideal of compact operators on } L^2(X)$. (iii) If H is a self-adjoint operator on $L^2(X)$ affiliated to A then for each $x \in \delta(A)$ the limit $\tau_x(H) := \text{s-lim}_{q \to x} T_q H T_q^*$ exists and $\sigma_{\text{ess}}(H) = \overline{\bigcup}_{x \in \delta(A)} \sigma(\tau_x(H))$.

To be precise, the last strong limit means: $\tau_{\chi}(H)$ is a self-adjoint operator (not necessarily densely defined) on $L^2(X)$ and s- $\lim_{q\to\chi} \theta(T_q H T_q^*) = \theta(\tau_{\chi}(H))$ for all $\theta \in C_0(\mathbb{R})$. It is clear that in the last three statements above one may replace $\delta(\mathcal{A})$ by a subset π if for each $A \in \mathcal{A} \rtimes X$ we have: $\tau_{\chi}(A) = 0 \forall \chi \in \pi \Rightarrow \tau_{\chi}(A) = 0 \forall \chi \in \delta(\mathcal{A})$. In the case of groupoid (pseudo)differential algebras (that is, when $\hat{\mathcal{A}}$ is a manifold with corners), the morphisms τ_{χ} can be defined using restrictions to fibers, as in [9], and the last three statements above (i)–(iii) remain valid.

3. Main results

As a warm-up and in order to introduce some general notation, we treat first the two-body case, where complete results may be obtained by direct arguments. The algebra of interactions in the standard two-body case is $C(X^+)$, and hence the Hamiltonian algebra is

$$\mathcal{C}(X^{+}) \rtimes X = \mathbb{C} \rtimes X + \mathcal{C}_{0}(X) \rtimes X = \mathcal{C}^{*}(X) + \mathscr{K}(X)$$
⁽²⁾

where the sums are direct. Thus $C(X^+) \rtimes X/\mathscr{H}(X) = C^*(X)$, which finishes the theory. Another elementary case, which has been considered as an example in [5], is $X = \mathbb{R}$ with $C(\mathbb{R}^+)$ replaced by the algebra $C(\mathbb{R})$ of continuous functions that have limits (distinct in general) at $\pm \infty$. Then there is no natural direct sum decomposition of $C(\mathbb{R}) \rtimes \mathbb{R}$ as in (2), but one has, by standard arguments, $C(\mathbb{R}) \rtimes \mathbb{R}/\mathscr{H}(\mathbb{R}) \simeq C^*(\mathbb{R}) \oplus C^*(\mathbb{R})$. Our purpose in this section is to extend this equation to arbitrary X.

Let $C(\overline{X})$ be the closure in $C_b(X)$ of the subalgebra of functions homogeneous of degree zero outside a compact set. Then $C(\overline{X}) = \{u \in C(X) \mid \lim_{\lambda \to +\infty} u(\lambda a) \text{ exists uniformly in } \hat{a} \in \mathbb{S}_X\}$, where, we recall, $\hat{a} := \mathbb{R}_+ a$ and $\mathbb{S}_X := (X \setminus \{0\})/\mathbb{R}_+$, so $\hat{a} \in \mathbb{S}_X$. As a set, the character space of $C(\overline{X})$ can be identified with the disjoint union $\overline{X} = X \cup \mathbb{S}_X$. The topology induced by the character space on X is the usual one and the intersections with X of the neighborhoods of some $\alpha \in \mathbb{S}_X$ are the sets that contain a truncated cone C such that there is $a \in \alpha$ such $\lambda a \in C$ if $\lambda \ge 1$. The set of such subsets is a filter $\tilde{\alpha}$ on X and, if Y is a Hausdorff space and $u : X \to Y$, then $\lim_{\alpha} u = y$ means that $u^{-1}(V) \in \tilde{\alpha}$ for any neighborhood V of u. We shall write $\lim_{x\to\alpha} u(x)$ instead of $\lim_{\tilde{\alpha}} u$. We have that $\mathcal{C}(\overline{X})$ is a translation invariant C^* -subalgebra of $\mathcal{C}^{\mathrm{u}}_{\mathrm{b}}(X)$ and so the crossed product $\mathcal{C}(\overline{X}) \rtimes X$ is well defined. We have the following explicit description of this algebra.

Proposition 3.1. The algebra $C(\overline{X}) \rtimes X$ acting on $L^2(X)$ consists of bounded operators A that have the position-momentum limit property and are such that the limit $\tau_{\alpha}(A) = s-\lim_{a\to\alpha} T_a A T_a^*$ exists for each $\alpha = \hat{a} \in \mathbb{S}_X$. If $A \in C(\overline{X}) \rtimes X$ and $\alpha \in \mathbb{S}_X$, then $\tau_{\alpha}(A) \in C^*(X)$ and $\tau(A) : \alpha \mapsto \tau_{\alpha}(A)$ is norm continuous. The map $\tau : C(\overline{X}) \rtimes X \to C(\mathbb{S}_X) \otimes C^*(X)$ is a surjective morphism whose kernel is the set of compact operators on $L^2(X)$, which gives $C(\overline{X}) \rtimes X / \mathcal{H}(X) \cong C(\mathbb{S}_X) \otimes C^*(X)$. If H is a self-adjoint operator affiliated to $C(\overline{X}) \rtimes X$ then $\tau_{\alpha}(H) = s-\lim_{a\to\alpha} T_a H T_a^*$ exists for all $\alpha \in \mathbb{S}_X$ and $\sigma_{ess}(H) = \bigcup_{\alpha} \sigma(\tau_{\alpha}(H))$.

In the next two examples H = h(P) + V with $h: X^* \to [0, \infty[$ continuous and proper. We denote by $|\cdot|$ a fixed norm on X^* and by \mathcal{H}^s we denote the usual Sobolev spaces on X ($s \in \mathbb{R}$).

Example 1. Let *V* be a bounded symmetric operator satisfying: (1) $\lim_{p\to 0} \|[S_p, V]\| = 0$ and (2) the limit $\tau_{\alpha}(V) = s-\lim_{a\to\alpha} T_a V T_a^*$ exists for each $\alpha \in \mathbb{S}_X$. Then *H* is affiliated to $\mathcal{C}(\overline{X}) \rtimes X$ and $\tau_{\alpha}(H) = h(P) + \tau_{\alpha}(V)$. Moreover, if *V* is a function, then $\tau_{\alpha}(V)$ is a number, but in general we have $\tau_{\alpha}(V) = v_{\alpha}(P)$ for some function $v_{\alpha} \in \mathcal{C}_b^u(X^*)$.

Example 2. Assume that *h* is locally Lipschitz and that there exist c, s > 0 such that, for all *p* with |p| > 1, $|\nabla h(p)| \le c(1 + h(p))$ and $c^{-1}|p|^s \le (1 + h(p))^{1/2} \le c|p|^s$. Let $V : \mathcal{H}^s \to \mathcal{H}^{-s}$ such that $\pm V \le \mu h(P) + \nu$ for some numbers μ, ν with $\mu < 1$ and satisfying the next two conditions: (1) $\lim_{p\to 0} ||[S_p, V]||_{\mathcal{H}^s \to \mathcal{H}^{-s}} = 0$, (2) $\forall \alpha \in \mathbb{S}_X$ the limit $\tau_{\alpha}(V) = s - \lim_{a\to \alpha} \tau_a V T_a^*$ exists strongly in $\mathcal{B}(\mathcal{H}^s, \mathcal{H}^{-s})$. Then $h(P) + \nu$ and $h(P) + \tau_{\alpha}(V)$ are symmetric operators $\mathcal{H}^s \to \mathcal{H}^{-s}$ that induce self-adjoint operators *H* and $\tau_{\alpha}(H)$ in $L^2(X)$ affiliated to $\mathcal{C}(\overline{X}) \rtimes X$ and $\sigma_{ess}(H) = \bigcup_{\alpha} \sigma(\tau_{\alpha}(H))$.

We now treat the *N*-body case. We first indicate a general way of constructing *N*-body Hamiltonians. For each linear subspace $Y \subset X$, let $\mathcal{A}(X/Y) \subset \mathcal{C}_{b}^{u}(X/Y)$ be a translation invariant \mathcal{C}^{*} -subalgebra containing $\mathcal{C}_{0}(X/Y)$ with $\mathcal{A}(X/X) = \mathcal{A}(0) = \mathbb{C}$. We embed $\mathcal{A}(X/Y) \subset \mathcal{C}_{b}^{u}(X)$ as usual by identifying *v* with $v \circ \pi_{Y}$. Then the \mathcal{C}^{*} -algebra \mathcal{A} generated by these algebras is a translation invariant \mathcal{C}^{*} -subalgebra of $\mathcal{C}_{b}^{u}(X)$ containing $\mathcal{C}(X^{+})$ and thus we may consider the crossed product $\mathcal{A} \rtimes X$ which is equal to the \mathcal{C}^{*} -algebra generated by the crossed products $\mathcal{A}(X/Y) \rtimes X$. The operators affiliated to $\mathcal{A} \rtimes X$ are *N*-body Hamiltonians. The standard *N*-body algebra corresponds to the minimal choice $\mathcal{A}(X/Y) = \mathcal{C}_{0}(X/Y)$ and has remarkable properties, which makes its study relatively easy (it is graded by the lattice of subspaces of *X*). Our purpose in this paper is to study what could arguably be considered to be the simplest extension of the classical *N*-body obtained by choosing $\mathcal{A}(X/Y) = \mathcal{C}(\overline{X/Y})$ for all *Y*. The next more general case would correspond to the choice $\mathcal{A}(X/Y) = \mathcal{V}(X/Y)$ (slowly oscillating functions, i.e. the closure in sup norm of the set of bounded functions of class \mathcal{C}^{1} with derivatives tending to zero at infinity).

Definition 3.2. Let $\mathcal{E}(X)$ be the *C**-subalgebra of $\mathcal{C}_{b}^{u}(X)$ generated by $\bigcup_{Y} \mathcal{C}(\overline{X/Y})$.

Clearly $\mathcal{E}(X)$ is a translation invariant C^* -subalgebra of $\mathcal{C}_b^u(X)$ containing $\mathcal{C}(X^+) := \mathcal{C}_0(X) + \mathbb{C}$. If Y is a linear subspace of X then the C^* -algebra $\mathcal{E}(X/Y) \subset \mathcal{C}_b^u(X/Y)$ is well defined and naturally embedded in $\mathcal{E}(X)$: it is the C^* -algebra generated by $\bigcup_{Z \supset Y} \mathcal{C}(\overline{X/Z})$. We have $\mathbb{C} = \mathcal{E}(0) = \mathcal{E}(X/X) \subset \mathcal{E}(X/Y) \subset \mathcal{E}(X/Z) \subset \mathcal{E}(X)$. If $\alpha \in \mathbb{S}_X$, we shall denote by abuse of notation X/α be the quotient $X/[\alpha]$ of X by the subspace $[\alpha] := \mathbb{R}\alpha$ generated by α and let us set $\pi_\alpha = \pi_{[\alpha]}$. It is clear that $\tau_\alpha(u)(x) = \lim_{r \to +\infty} u(ra + x)$ exists $\forall u \in \mathcal{E}(X)$ and that the resulting function $\tau_\alpha(u)$ belongs to $\mathcal{E}(X)$. The map τ_α is an endomorphism of $\mathcal{E}(X)$ and a linear projection of $\mathcal{E}(X)$ onto the C^* -subalgebra $\mathcal{E}(X/\alpha)$.

If $\alpha \in \mathbb{S}_X$ and $\beta \in \mathbb{S}_{X/\alpha}$, then β generates a one-dimensional linear subspace $[\beta] := \mathbb{R}\beta \subset X/\alpha$, as above, and hence $\pi_{\alpha}^{-1}([\beta])$ is a two-dimensional subspace of X that we shall denote $[\alpha, \beta]$. We shall identify $(X/\alpha)/\beta$ with $X/[\alpha, \beta]$. Then we have two idempotent morphisms $\tau_{\alpha} : \mathcal{E}(X) \to \mathcal{E}(X/\alpha)$ and $\tau_{\beta} : \mathcal{E}(X/\alpha) \to \mathcal{E}(X/[\alpha, \beta])$. Thus $\tau_{\beta}\tau_{\alpha} : \mathcal{E}(X) \to \mathcal{E}(X/[\alpha, \beta])$ is an idempotent morphism. This construction extends in an obvious way to families $\vec{\alpha} = (\alpha_1, \ldots, \alpha_n)$ with $n \leq \dim X$ and $\alpha_1 \in \mathbb{S}_X, \alpha_2 \in \mathbb{S}_{X/\alpha_1}, \alpha_3 \in \mathbb{S}_{X/[\alpha_1,\alpha_2]}, \ldots$ (we allow n = 0 and denote A the set of all such families). The endomorphism $\tau_{\vec{\alpha}}$ of $\mathcal{E}(X)$ is defined by induction: $\tau_{\vec{\alpha}} = \tau_{\alpha_n} \ldots \tau_{\alpha_1}$. We also define $[\alpha_1, \alpha_2, \ldots, \alpha_n]$ by induction, so this is an n-dimensional subspace of X associated with $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ and we denote $X/\vec{\alpha}$ the quotient of X with respect to it. Thus $\tau_{\vec{\alpha}}$ is an endomorphism of $\mathcal{E}(X)$ and a projection of $\mathcal{E}(X)$ onto $\mathcal{E}(X/\vec{\alpha})$.

Proposition 3.3. If $\vec{\alpha} \in A$ and $a \in X/\vec{\alpha}$, then $\varkappa(u) = (\tau_{\vec{\alpha}}u)(a)$ defines a character of $\mathcal{E}(X)$. Conversely, each character of $\mathcal{E}(X)$ is of this form.

Remark 1. A natural Abelian C^* -algebra in the present context is the set $\mathcal{R}(X)$ of all bounded uniformly continuous functions $v : X \to \mathbb{C}$ such that $\lim_{r\to\infty} v(ra + x)$ exists locally uniformly in $x \in X$ for each $a \in X$. It would be interesting to find an explicit description of its spectrum.

This description of the spectrum of $\mathcal{E}(X)$ extends [10]. We now state our main results.

Theorem 3.1. Let *H* be a self-adjoint operator on $L^2(X)$ affiliated to $\mathcal{E}(X) \rtimes X$. Then for any $a \in X \setminus \{0\}$ the limit s-lim_{$r \to +\infty$} $T_{ra}HT_{ra}^* =: \tau_{\hat{a}}(H)$ exists and $\sigma_{ess}(H) = \bigcup_{\alpha \in \mathbb{S}_X} \sigma(\tau_{\alpha}(H))$.

Theorem 3.2. Let h be as in Example 2 and $V = \sum V_Y$ with $V_Y : \mathcal{H}^s \to \mathcal{H}^{-s}$ symmetric operators such that $V_Y = 0$ but for a finite number of Y and satisfying: (i) $\exists \mu_Y, \nu_Y \ge 0$ with $\sum_Y \mu_Y < 1$ such that $\pm V_Y \le \mu_Y h(P) + \nu_Y$, (ii) $\lim_{p\to 0} ||[S_p, V_Y]||_{\mathcal{H}^s \to \mathcal{H}^{-s}} = 0$, (iii) $[T_y, V_Y] = 0$ for all $y \in Y$, (iv) $\tau_\alpha(V_Y) := s-\lim_{a\to \alpha} T_a V_Y T_a^*$ exists in $B(\mathcal{H}^s, \mathcal{H}^{-s})$ for all $\alpha \in \mathbb{S}_{X/Y}$. Then the maps $\mathcal{H}^s \to \mathcal{H}^{-s}$ given by h(P) + V and $h(P) + \sum_Y \tau_\alpha(V_Y)$ induce self-adjoint operators H and $\tau_\alpha(H)$ in $L^2(X)$ affiliated to $\mathscr{E}(X)$ and $\sigma_{ess}(H) = \bigcup_{\alpha \in \mathbb{S}_Y} \sigma(\tau_\alpha(H))$.

Example 3. Using [2], we also obtain that Theorem 3.2 covers uniformly elliptic operators of the form $H = \sum_{|k|, |\ell| \le s} P^k a_{k\ell} P^\ell$, where $a_{k\ell}$ are finite sums of functions of the form $v_Y \circ \pi_Y$ with $v_Y : X/Y \to \mathbb{R}$ bounded measurable such that $\lim_{z\to\alpha} v_Y(z)$ exists uniformly in $\alpha \in \mathbb{S}_{X/Y}$. The fact that we allow $a_{k\ell}$ to be only bounded measurable for $|k| = |\ell| = s$ is not trivial.

In addition to the above-mentioned results, we also use general results on cross-product C^* -algebras, their ideals, and their representations [4,13]. The maximal ideal spectrum of the algebra $\mathcal{E}(X)$ is of independent interest and can be used to study the regularity properties of the eigenvalues of the *N*-body Hamiltonian [1]. Its relation to the constructions of Vasy in [14] will be studied elsewhere.

Acknowledgements

We thank Bernd Ammann for several useful discussions. Victor Nistor was partially supported by ANR SINGSTAR 2014–18 and by NSF Grant DMS-1016556.

References

- [1] B. Ammann, C. Carvalho, V. Nistor, Regularity for eigenfunctions of Schrödinger operators, Lett. Math. Phys. 101 (2012) 49-84.
- [2] M. Damak, V. Georgescu, Self-adjoint operators affiliated to C*-algebras, Rev. Math. Phys. 16 (2) (2004) 257–280.
- [3] J. Dereziński, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
- [4] T. Fack, G. Skandalis, Sur les représentations et idéaux de la C*-algèbre d'un feuilletage, J. Oper. Theory 8 (1) (1982) 95-129.
- [5] V. Georgescu, A. Iftimovici, Crossed products of C*-algebras and spectral analysis of quantum Hamiltonians, Commun. Math. Phys. 228 (3) (2002) 519–560.
- [6] V. Georgescu, A. Iftimovici, Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory, Rev. Math. Phys. 18 (4) (2006) 417–483.
- [7] B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble) 38 (2) (1988) 95–112.
- [8] Y. Last, B. Simon, The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math. 98 (2006) 183-220.
- [9] R. Lauter, B. Monthubert, V. Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math. 5 (2000) 625-655 (electronic).
- [10] A. Mageira, Graded C*-algebras, J. Funct. Anal. 254 (6) (2008) 1683-1701.
- [11] V. Nistor, N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators (in final preparation).
- [12] V. Rabinovich, S. Roch, B. Silbermann, Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, vol. 150, Birkhäuser Verlag, Basel, Switzerland, 2004.
- [13] J. Renault, A Groupoid Approach to C*-Algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980.
- [14] A. Vasy, Propagation of singularities in many-body scattering, Ann. Sci. Éc. Norm. Super. (4) 34 (3) (2001) 313-402.