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algebras being Calabi–Yau. The point modules over these algebras are described explicitly.
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r é s u m é

En nous appuyant sur les travaux de Fløystad et Vatne, nous décrivons quelques propriétés 
homologiques des algèbres extrémales. Plus précisément, nous montrons que les algèbres 
extrémales sont intègres, nœthériennes, régulières au sens d’Auslander, de Cohen–Macaulay 
et de Calabi–Yau. Nous calculons également les modules cycliques de la série de Hilbert 
(1 − t)−1 sur ces algèbres extrémales.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

Enveloping algebras of graded Lie algebras form a basic class of Artin–Schelter regular algebras. A complete proof of this 
fact is given in [4, Theorem 2.1]. Floystad and Vatne prove that the enveloping algebra of any positive graded Lie algebra is 
Artin–Schelter regular with the global dimension and Gelfand–Kirillov dimension equal to the dimension of the Lie algebra 
as a vector space. They also construct a 5-dimensional Artin–Schelter algebra, called the extremal algebra. They show that 
the Hilbert series of the extremal algebra cannot be realized as the one of the enveloping algebra of any graded Lie algebra 
generated in degree one.

After recalling the definition given by Floystad and Vatne in [4], it is proved in Section 1 that the (generalized) extremal 
algebra is Noetherian, Auslander regular and Cohen–Macaulay. A necessary and sufficient condition is also given there for 
the generalized extremal algebras being Calabi–Yau. The point modules over the generalized extremal algebras are described 
in Section 2.

The base field k is assumed to be algebraically closed of characteristic zero. All vector spaces and algebras are over k. All 
the algebras are graded algebras generated in degree one.
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1. Extremal algebras

Let A be the extremal algebra given in [4]. Namely, A is the quotient algebra of the free algebra k〈x, y〉 modulo the 
following three commutator relations:[

x2, y
]
,

[
x, y3], [x, yR y], where R � yxyx + xy2x + xyxy.

Floystad and Vatne construct the minimal projective resolution of the trivial module Ak and prove that A is a 5-dimensional 
Artin–Schelter regular algebra [4, Theorem 4.2]. Moreover,{

yny BnB CnC AnA xnx
∣∣ ny,nB ,nC ,nA,nx ∈N

}
is a k-linear basis for A where A � xy, B � xy2, C � AB = xyxy2.

Proposition 1.1. The algebra A is strongly Noetherian, Auslander regular and Cohen–Macaulay.

Proof. Let z1 = x2 and z2 = y3. Then z1 and z2 are normal (in fact, central) elements of A. So, the image of z2 is central in 
A1 =A/(z1). Let A2 =A1/(z2) ∼= k〈x, y〉/(x2, y3, [x, yR y]). Since x(xy + yx) ≡ (xy + yx)x mod (x2) and R ≡ (xy + yx)2 mod
(x2), then x(xy + yx)3 ≡ (xy + yx)3x mod (x2) and

y(xy + yx)3 − (xy + yx)3 y ≡ yR(xy + yx) − (xy + yx)R y ≡ −[x, yR y] mod
(
x2).

So, the image of z3 = (xy + yx)3 in A2 (in fact, even in A1) is a central element.
Since [y, yR y] ≡ y2xy2xy − yxy2xy2 ≡ [y2xy2x + xy2xy2, y] mod (y3), then [y, yR y + xy2xy2 + y2xy2x] ≡ 0 mod (y3). 

Obviously [x, yR y + xy2xy2 + y2xy2x] ≡ 0 mod (x2, [x, yR y]). Let z4 = (xy2 + yxy + y2x)2. Then z4 ≡ yR y + xy2xy2 +
y2xy2x mod (x2, y3), and the image of z4 is a central element in

A3 = A2/(z3) ∼= k〈x, y〉/(x2, y3, (xy + yx)3).
Let A4 =A3/(z4) ∼= k〈x, y〉/(x2, y3, (xy + yx)3, (xy2 + yxy + y2x)2). Let z5 = (yxy2 − θ y2xy)x + x(yxy2 − θ y2xy), where 

θ ∈ k is a primitive cubic root of unit. Then [x, z5] ≡ 0 mod (x2) and z5 y ≡ θ yz5 mod (z1, z2, z4). So, z5 is a normal element 
in A4.

Let A5 = A/(z1, · · · , z5). By using the k-basis of A, it is easy to see that A5 is spanned by the elements of the form 
yny BnB CnC AnA xnx with nx ≤ 1, ny ≤ 2, nA ≤ 2, nB ≤ 1, nC = 0, which implies that A5 is a finite-dimensional graded algebra.

It follows that A has enough normal elements. Hence A is Cohen–Macaulay and Auslander regular by [10, Theorem 0.2], 
and strongly Noetherian by [2, Proposition 4.9]. �
Definition 1.2. A connected graded algebra A is called rigid Gorenstein or satisfying the twisted Calabi–Yau condition if

Exti
Ae

(
A, Ae) ∼=

{
Aν, i = d,

0, i �= d.

for some integer d and graded automorphism ν of A, where ν is called the Nakayama automorphism of A, denoted by νA . 
If further, A is homologically smooth, then A is called twisted Calabi–Yau.

A twisted Calabi–Yau algebra A is Calabi–Yau if its Nakayama automorphism νA = id. Any Noetherian connected graded 
Artin–Schelter Gorenstein algebra satisfies the twisted Calabi–Yau condition [8].

Lemma 1.3. (See [7], Lemma 1.5.) Let A be a Noetherian connected graded Artin–Schelter Gorenstein algebra and let z be a homoge-
neous νA -normal non-zero divisor of positive degree. Let σ be the element in Aut(A) such that za = σ(a)z for all a ∈ A. Then νA/(z) is 
equal to νA ◦ σ restricted to A/(z).

Proposition 1.4. The extremal algebra A is a Calabi–Yau algebra.

Proof. It suffices to show that the Nakayama automorphism of A is trivial. Since A can be viewed as a bigraded algebra, 
one can get that νA(x) = rx and νA(y) = sy for some r, s ∈ k \{0}. Note that {z1, z2, z3, z4} is a sequence of central elements 
and z5 is a normal element. By Lemma 1.3, νA4 (x) = rx and νA4 (y) = sy. Since [x, z5] = 0, z5 y = θ yz5 in A5, νA5 (x) = rx
and νA5 (y) = −sθ y. Since A5 is a Frobenius algebra with a k-basis (it follows from diamond lemma [3]),

{
yny BnB CnC AnA xnx

∣∣ nx ≤ 1,ny ≤ 2,nA ≤ 2,nB ≤ 1,nC = 0
}
,

νA5(x) = x and νA5(y) = −θ y.

It follows that r = s = 1, which implies that the Nakayama automorphism of A is trivial. Hence, the extremal algebra A is 
a Calabi–Yau algebra. �
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Lemma 1.5. Let E = E0 ⊕ E1 ⊕ · · · ⊕ El be a connected graded Frobenius k-algebra and τ ∈ GrAut(E). Then τ (u) = (hdetτ )−1u for 
any u ∈ El, where hdetτ is the homological determinant of τ .

Proof. It follows from [6, Lemma 2.6]. �
Theorem 1.6. (See [7], Theorem 0.3.) Let A be a Noetherian connected graded Artin–Schelter regular algebra with Gorenstein parame-
ter l. Then

νAσ = νA ◦ σ l ◦ ξ−1
hdet σ ,

where Aσ is Zhang twist of A via a ∗ b = σ |b|(a)b, ξhdet σ (a) = (hdetσ)|a|a, ∀a ∈ A, and |a| is the degree of the homogeneous 
element a.

As remarked in [4, Remark 4.4], some deformed algebras of the extremal algebra are also Artin–Schelter regular algebras 
of dimension five. Zhou and Lu classified this class of algebras [11, Example 4.5].

Definition 1.7. The generalized extremal algebra F(p, q), where p �= 0, q ∈ k is the quotient algebra k〈x, y〉/(r1, r2, r3) with 
relations

r1 = yx2 − p2x2 y,

r2 = y3x − p3xy3,

r3 = yR yx − p4xyR y − p8q
(
x2 yxy3 − px3 y4),

where R � yxyx + pxy2x + p2xyxy.

Remark 1. Proposition 1.1 holds for all the generalized extremal algebras.

It is easy to see that F(p, q) is the Zhang twist F(1, q)σ as stated in [11, Example 4.5], where the automorphism σ is 
given by σ(x) = p−1x, σ(y) = y. Notice that A =F(1, 0).

Proposition 1.8. (See [5], Proposition 2.4.) Let A be Noetherian Artin–Schelter Gorenstein and τ ∈ Aut(A). If z is a normal non-zero 
divisor such that τ (z) = λz for some λ ∈ k \ {0}, then hdetA τ = λ hdetA/(z) τ , where hdet is the homological determinant.

Proposition 1.9. The generalized extremal algebras F(p, q) are Artin–Schelter regular of dimension 5 with Gorenstein parameter 
l = 12. F(p, q) is Calabi–Yau if and only if p = 1.

Proof. First we claim that the algebras F(1, q) are Calabi–Yau for any q. It is easy to check that {z1, z2, z3, z4, z5} is a normal 
sequence of elements in F(1, q) and x2 is also central. Then by Lemma 1.3, νF(1,q) = νA when restricted to the degree-one 
part. So the algebras F(1, q) are Calabi–Yau. Next, let us compute the Nakayama automorphism of F(p, q). By Theorem 1.6, 
νF(p,q) = σ 12 ◦ ξ−1

hdet σ . By using Proposition 1.8 and the same process as in Propositions 1.1,

hdetσ = p−2 p−3 p−2 p−2 hdetA5 σ = p−9 hdetA5 σ .

Since A5 is a Frobenius algebra as noted in the proof of Proposition 1.4 and y2xy2xyxyx is a base element for (A5)10 with 
σ(y2xy2xyxyx) = p−4 y2xy2xyxyx, hdetσ = p−9 hdetA5 σ = p−5. So

νF(p,q)(x) = p−7x, νF(p,q)(y) = p5 y.

Since p5 = p7 = 1, then p = 1. The conclusion follows. �
2. Point modules over the extremal algebra

In this section, we describe the point modules over the extremal algebra. Let us first recall the definition of point 
modules.

Definition 2.1. (See [1, Definition 3.8].) Let A be a connected graded k-algebra generated in degree one. A graded A-module 
M is called a point module if M is cyclic and its Hilbert series H M(t) = (1 − t)−1.

Proposition 2.2. All together, there are 6 families of isomorphism classes, which are all parameterized by k, and 3 isolated isomorphism 
classes of point modules over A.
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Proof. Suppose that P = Ae0 = ⊕∞
i=0 kei is a point module over A with deg ei = i. Then, for any r ≥ 0, there are some 

jr+1, hr+1 ∈ k such that

xer = jr+1er+1, yer = hr+1er+1.

Obviously, for any fixed r ∈ N, hr and jr are not all equal to zero. So, ( jr, hr) can be viewed as a point in P1, and the point 
module P is determined uniquely by the infinite point sequence ( j1, h1), ( j2, h2), · · · , ( jr, hr), · · · up to isomorphism.

Now, we classify the point modules according to x2 P �= 0 or x2 P = 0.
Case 1. Suppose that x2 P �= 0. Since x2 ∈A is central and kei+2 =Ai+2e0 =Aie2 �= 0, then x2e0 �= 0, and x2 P = ⊕∞

i=2 kei . 
Hence xei �= 0 for all i ≥ 0. After changing the k-basis of P if necessary, we may assume that jr+1 = 1 for all r ≥ 0.

It follows from the A-module structure of P and the first two relations [x2, y] and [x, y3] in A that{
hr+1 = hr+3,

hr+1hr+2hr+3 = hr+2hr+3hr+4,
(∀r ≥ 0). (2.1)

This is equivalent to the following system of equations{
hr+1 = hr+3,

hr+1hr+2(hr+1 − hr+2) = 0,
(∀r ≥ 0). (2.2)

Then it is easy to see that (2.2) has the following three solutions:

• for any r ∈N, h1 = hr ;
• for any r ∈N, h2r+1 = 0 and h2 = h2r �= 0;
• for any r ∈N, h2r = 0 and h1 = h2r+1 �= 0.

The third relation [x, yR y] in A induces the equations

hr+1hr+3hr+5hr+6 + hr+1hr+3hr+4hr+6 + hr+1hr+2hr+4hr+6

= hr+2hr+4hr+6hr+7 + hr+2hr+4hr+5hr+7 + hr+2hr+3hr+5hr+7 (r ≥ 0),

which are satisfied by all the solutions to (2.2).
Each solution above gives one family of isomorphism class of the point modules. The corresponding infinite point se-

quences in P1 are

(I) (1, h), (1, h), (1, h), · · · (1, h), · · · ,
(II) (1, 0), (1, h), (1, 0), (1, h), · · · , (1, 0), (1, h), · · · ,

(III) (1, h), (1, 0), (1, h), (1, 0), · · · , (1, h), (1, 0), · · · .

So, in this case, we have three families of isomorphism class of the point modules over A, which are parameterized by k, 
k∗ and k∗ , respectively.

Case 2. Suppose x2 P = 0. Let A1 = A/(x2). Then P can be viewed as a point module over A1. So it turns out to figure 
out the point modules over A1. It follows from the module structure of P and the generating relations of A that, for all 
r ≥ 0, ⎧⎪⎨

⎪⎩
jr+1 jr+2 = 0,

hr+1hr+2hr+3 jr+4 = jr+1hr+2hr+3hr+4,

hr+1 jr+2hr+3 jr+4hr+5hr+6 jr+7 + hr+1 jr+2hr+3hr+4 jr+5hr+6 jr+7 + hr+1hr+2 jr+3hr+4 jr+5hr+6 jr+7
= jr+1hr+2 jr+3hr+4 jr+5hr+6hr+7 + jr+1hr+2 jr+3hr+4hr+5 jr+6hr+7 + jr+1hr+2hr+3 jr+4hr+5 jr+6hr+7.

(2.3)

Multiplying the third equation by jr+2 jr+4, we get hr+1 j2
r+2hr+3 j2

r+4hr+5hr+6 jr+7 = 0 and so hr+1 jr+2hr+3 jr+4hr+5
hr+6 jr+7 = 0. Then it is easy to see that the system of Eqs. (2.3) is equivalent to that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jr+1 jr+2 = 0,

hr+1hr+2hr+3 jr+4 = jr+1hr+2hr+3hr+4,

hr+1 jr+2hr+3 jr+4hr+5hr+6 jr+7 = 0,

hr+1 jr+2hr+3hr+4 jr+5hr+6 jr+7 = 0,

hr+1hr+2 jr+3hr+4 jr+5hr+6 jr+7 = 0,

jr+1hr+2 jr+3hr+4 jr+5hr+6hr+7 = 0,

jr+1hr+2 jr+3hr+4hr+5 jr+6hr+7 = 0,

jr+1hr+2hr+3 jr+4hr+5 jr+6hr+7 = 0,

(∀r ≥ 0). (2.4)

The infinite point sequence {( jr, hr) | r ≥ 1} is a sequence associated with some point module P if and only if it is a 
solution to the system of Eqs. (2.4).
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Furthermore, if we define a new sequence {(ur, vr) | r ∈N} by ur := jr+1; vr := hr+1, ∀r ∈ N, then the sequence {(ur, vr) |
r ∈ N} is also a solution to (2.4).

Now let us solve the following first.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jr+1 jr+2 = 0, 0 ≤ r ≤ 5,

hr+1hr+2hr+3 jr+4 = jr+1hr+2hr+3hr+4, 0 ≤ r ≤ 3,

h1 j2h3 j4h5h6 j7 = 0,

h1 j2h3h4 j5h6 j7 = 0,

h1h2 j3h4 j5h6 j7 = 0,

j1h2 j3h4 j5h6h7 = 0,

j1h2 j3h4h5 j6h7 = 0,

j1h2h3 j4h5 j6h7 = 0.

(2.5)

To find the isomorphism class, we may assume that hr = 1 (resp. jr = 1) if jr = 0 (resp. hr = 0). Then the system of Eqs. (2.5)
has the following 7 solutions.

• If j1 = j2 = 0, then the solutions are

(1)

(
j1 = 0 j2 = 0 j3 = 0 j4 = 0 j5 = 0 j6 = 0 j7 = 0
h1 = 1 h2 = 1 h3 = 1 h4 = 1 h5 = 1 h6 = 1 h7 = 1

)
,

(2)

(
j1 = 0 j2 = 0 j3 = 1 j4 = 0 j5 = 0 j6 = 1 j7 = 0
h1 = 1 h2 = 1 h3 h4 = 1 h5 = 1 h6 = h3 h7 = 1

)
,

(3)

(
j1 = 0 j2 = 0 j3 = 1 j4 = 0 j5 = 1 j6 = 0 j7 = 0
h1 = 1 h2 = 1 h3 = 0 h4 = 1 h5 = 0 h6 = 1 h7 = 1

)
.

• If j1 = 0, j2 �= 0, then the solutions are

(4)

(
j1 = 0 j2 = 1 j3 = 0 j4 = 0 j5 = 1 j6 = 0 j7 = 0
h1 = 1 h2 h3 = 1 h4 = 1 h5 = h2 h6 = 1 h7 = 1

)
,

(5)

(
j1 = 0 j2 = 1 j3 = 0 j4 = 1 j5 = 0 j6 = 1 j7 = 0
h1 = 1 h2 = 0 h3 = 1 h4 = 0 h5 = 1 h6 = 0 h7 = 1

)
.

• If j1 �= 0, j2 = 0, then the solutions are

(6)

(
j1 = 1 j2 = 0 j3 = 0 j4 = 1 j5 = 0 j6 = 0 j7 = 1

h1 h2 = 1 h3 = 1 h4 = h1 h5 = 1 h6 = 1 h7 = h1

)
,

(7)

(
j1 = 1 j2 = 0 j3 = 1 j4 = 0 j5 = 1 j6 = 0 j7 = 1
h1 = 0 h2 = 1 h3 = 0 h4 = 1 h5 = 0 h6 = 1 h7 = 0

)
.

It follows that the solutions to (2.4) are

• (1)(1)(1) · · · ,
• (2)(4)(6) (2)(4)(6)(2)(4)(6) · · · (2)(4)(6) · · · ,
• (4)(6)(2) (4)(6)(2)(4)(6)(2) · · · (4)(6)(2) · · · ,
• (6)(2)(4) (6)(2)(4)(6)(2)(4) · · · (6)(2)(4) · · · ,
• (5)(7) (5)(7)(5)(7) · · · (5)(7) · · · ,
• (7)(5) (7)(5)(7)(5) · · · (7)(5) · · · .

The corresponding infinite point sequences in P1 are

(IV) (0, 1), (0, 1), (0, 1), · · · (0, 1), · · · ,
(V) (0, 1), (0, 1), (1, h), (0, 1), (0, 1), (1, h), · · · , (0, 1), (0, 1), (1, h), · · · ,

(VI) (0, 1), (1, h), (0, 1), (0, 1), (1, h), (0, 1), · · · , (0, 1), (1, h), (0, 1), · · · ,
(VII) (1, h), (0, 1), (0, 1), (1, h), (0, 1), (0, 1), · · · , (1, h), (0, 1), (0, 1), · · · ,

(VIII) (0, 1), (1, 0), (0, 1), (1, 0), · · · , (0, 1), (1, 0), · · · ,
(IX) (1, 0), (0, 1), (1, 0), (0, 1), · · · , (1, 0), (0, 1), · · · .

So, in this case, we have three families of isomorphism class of the point modules over A given by (V), (VI) and (VII), 
which are all parameterized by k, and three isolated class given by (IV), (VIII) and (IX).

To sum up, up to isomorphisms, there are 6 families of isomorphism classes, which are all parameterized by k, and 3
isolated isomorphism classes of point modules over A. �
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To determine the isomorphism classes of point modules over the generalized extremal algebras F(p, q), we prove an 
easy fact that the twisted equivalence [9] preserves the point modules.

Lemma 2.3. Suppose that the connected graded algebras A and B are twisted equivalent. Then the equivalence preserves the point 
modules.

Proof. Suppose B ∼= Aτ for some twisting system τ of A. Then, GrMod A ∼= GrModAτ and the equivalence functor is defined by 
sending an A-module M to the Aτ -module Mτ , which is equal to M as vector spaces. The conclusion follows from the fact that the 
functor preserves the cyclic modules. �
Corollary 2.4. All together, there are 6 families of isomorphism classes, which are all parameterized by k, and 3 isolated isomorphism 
classes of point modules over the generalized extremal algebras F(p, q).

Proof. By Lemma 2.3, it suffices to show the result for the algebras F(1, q). The proof follows from that of Proposition 2.2, 
which is independent of q. �
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