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Let {B(t): 0 ≤ t ≤ 1} be a linear Brownian motion and let dim denote the Hausdorff 
dimension. Let α > 1

2 and 1 ≤ β ≤ 2. We prove that, almost surely, there exists no set 
A ⊂ [0, 1] such that dim A > 1

2 and B: A → R is α-Hölder continuous. The proof is an 
application of Kaufman’s dimension doubling theorem. As a corollary of the above theorem, 
we show that, almost surely, there exists no set A ⊂ [0, 1] such that dim A > β

2 and 
B: A →R has finite β-variation. The zero set of B and a deterministic construction witness 
that the above theorems give the optimal dimensions.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On note {B(t): 0 ≤ t ≤ 1} un mouvement brownien linéaire et dim la dimension de 
Hausdorff. Pour α > 1

2 et 1 ≤ β ≤ 2, nous montrons que, presque sûrement, il n’existe pas 
d’ensemble A ⊂ [0, 1] tel que dim A > 1

2 et B: A → R soit α-Hölder continue. La preuve 
est une application du théorème de Kaufman sur le doublement de dimension. Comme 
corollaire du théorème ci-dessus, nous montrons que, presque sûrement, il n’existe pas 
d’ensemble A ⊂ [0, 1] tel que dim A > β

2 et B: A → R ait une β-variation finie. L’ensemble 
des zéros de B et une construction déterministe montrent que les théorèmes ci-dessus 
donnent les dimensions optimales.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We examine how large a set can be, on which linear Brownian motion is α-Hölder continuous for some α > 1
2 or has 

finite β-variation for some 1 ≤ β ≤ 2. The main goal of the paper is to prove the following two theorems.

Theorem 1.1. Let {B(t): 0 ≤ t ≤ 1} be a linear Brownian motion and let α > 1
2 . Then, almost surely, there exists no set A ⊂ [0,1] with 

dim A > 1
2 such that B: A →R is α-Hölder continuous.
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Recall that for A ⊂ [0, 1] the β-variation of a function f : A →R is defined as

Varβ( f ) = sup

{
n∑

i=1

∣∣ f (xi) − f (xi−1)
∣∣β : x0 < · · · < xn, xi ∈ A, n ∈N

+
}

.

Theorem 1.2. Let {B(t): 0 ≤ t ≤ 1} be a linear Brownian motion and assume that 1 ≤ β ≤ 2. Then, almost surely, there exists no set 
A ⊂ [0, 1] with dim A > β

2 such that B: A →R has finite β-variation. In particular,

P

(
∃A : dim A >

1

2
and B|A is increasing

)
= 0.

Clearly, the above theorems hold simultaneously for a countable dense set of parameters α, β , thus simultaneously for all 
α, β . Let Z be the zero set of a linear Brownian motion B . Then, almost surely, dimZ = 1

2 and B|Z is α-Hölder continuous 
for all α > 1

2 , so Theorem 1.1 gives the optimal dimension. We prove also that Theorem 1.2 is best possible, see Theorem 4.3.

1.1. Motivation and related results

Let C[0, 1] denote the set of continuous functions f : [0, 1] → R endowed with the maximum norm. Elekes proved the 
following restriction theorem.

Theorem 1.3. (See Elekes [3].) Let 0 < α < 1. For the generic continuous function f ∈ C[0, 1] (in the sense of Baire category)

(1) for all A ⊂ [0, 1], if f |A is α-Hölder continuous, then dim A ≤ 1 − α;
(2) for all A ⊂ [0, 1], if f |A is of bounded variation, then dim A ≤ 1

2 .

The above theorem is sharp, the following result was proved by Kahane and Katznelson, and Máthé independently, by 
different methods.

Theorem 1.4. (See Kahane and Katznelson [6], Máthé [10].) Let 0 < α < 1. For any f ∈ C[0, 1] there are compact sets A, D ⊂ [0, 1]
such that

(1) dim A = 1 − α and f |A is α-Hölder continuous;
(2) dim D = 1

2 and f |D is of bounded variation.

Kahane and Katznelson also considered Hölder continuous functions.

Definition 1.5. For A ⊂ [0, 1] let Cα(A) and BV(A) denote the set of functions f : A → R that are α-Hölder continuous and 
of bounded variation, respectively. For all 0 < α < β < 1, define

H(α,β) = sup
{
γ : ∀ f ∈ Cα[0,1] ∃A ⊂ [0,1] s.t. dim A = γ and f |A ∈ Cβ(A)

}
,

V (α) = sup
{
γ : ∀ f ∈ Cα[0,1] ∃A ⊂ [0,1] s.t. dim A = γ and f |A ∈ B V (A)

}
.

Theorem 1.6. (See Kahane and Katznelson [6].) For all 0 < α < β < 1, we have:

H(α,β) ≤ 1 − β

1 − α
and V (α) ≤ 1

2 − α
.

Question 1.7. (See Kahane and Katznelson [6].) Is the above result the best possible?

As the linear Brownian motion B is α-Hölder continuous for all α < 1
2 , our results and Theorem 1.4 imply the following 

corollary.

Corollary 1.8. For all 0 < α < 1
2 < β < 1 we have:

H(α,β) ≤ 1

2
and V (α) = 1

2
.

Related results in the discrete setting can be found in [1].
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Definition 1.9. Let d ≥ 2 and f : [0, 1] →R
d . We say that f is increasing on a set A ⊂ [0, 1] if all the coordinate functions of 

f |A are non-decreasing.

Question 1.10. Let d ≥ 2 and let {B(t): 0 ≤ t ≤ 1} be a standard d-dimensional Brownian motion. What is the maximal number γ
such that, almost surely, B is increasing on some set of Hausdorff dimension γ ?

2. Preliminaries

The diameter of a metric space X is denoted by diam X . For all s ≥ 0, the s-dimensional Hausdorff measure of X is defined 
as:

Hs(X) = lim
δ→0+Hs

δ(X), where

Hs
δ(X) = inf

{ ∞∑
i=1

(diam Xi)
s : X ⊂

∞⋃
i=1

Xi, ∀i diam Xi ≤ δ

}
.

The Hausdorff dimension of X is defined as:

dim X = inf
{

s ≥ 0 : Hs(X) < ∞}
.

Let A ⊂ R and α > 0. A function f : A → R is called α-Hölder continuous if there exists a constant c ∈ (0, ∞) such that 
| f (x) − f (y)| ≤ c|x − y|α for all x, y ∈ A.

Fact 2.1. If f : A →R is α-Hölder continuous, then dim f (A) ≤ 1
α dim A.

3. Hölder restrictions

The goal of this section is to prove Theorem 1.1. First we need some preparation.

Definition 3.1. A function g: [0, 1] → R
2 is called dimension doubling if

dim g(A) = 2 dim A for all A ⊂ [0,1].

Theorem 3.2. (See Kaufman [7], see also [12].) The two-dimensional Brownian motion is almost surely dimension doubling.

The following theorem follows from [5, Lemma 2] together with the fact that the closed range of the stable subordinator 
with parameter 1

2 coincides with the zero set of a linear Brownian motion. For a more direct reference see [8].

Theorem 3.3. Let A ⊂ [0, 1] be a compact set with dim A > 1
2 and let Z be the zero set of a linear Brownian motion. Then

dim(A ∩Z) > 0 with positive probability.

Lemma 3.4 (Key Lemma). Let {W (t): 0 ≤ t ≤ 1} be a linear Brownian motion. Assume that α > 1
2 and f : [0, 1] → R is a continuous 

function such that ( f , W ) is almost surely dimension doubling. Then there is no set A ⊂ [0, 1] such that dim A > 1
2 and f is α-Hölder 

continuous on A.

Proof. Assume to the contrary that there is a set A ⊂ [0, 1] such that dim A > 1
2 and f is α-Hölder continuous on A. As f

is still α-Hölder continuous on the closure of A, we may assume that A itself is closed. Let Z be the zero set of W , then 
Theorem 3.3 implies that dim(A ∩Z) > 0 with positive probability. Then the α-Hölder continuity of f |A and Fact 2.1 imply 
that, with positive probability,

dim( f , W )(A ∩Z) = dim
(

f (A ∩Z) × {0}) = dim f (A ∩Z)

≤ 1

α
dim(A ∩Z) < 2 dim(A ∩Z),

which contradicts the fact that ( f , W ) is almost surely dimension doubling. �
Proof of Theorem 1.1. Let {W (t): 0 ≤ t ≤ 1} be a linear Brownian motion which is independent of B . By Kaufman’s dimension 
doubling theorem (B, W ) is dimension doubling with probability one, thus applying Lemma 3.4 for an almost sure path of 
B finishes the proof. �
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4. Restrictions of bounded variation

We need the following lemma, which may be obtained by a slight modification of [2, Lemma 4.1]. For the reader’s 
convenience, we outline the proof.

Lemma 4.1. Let α, β > 0. Assume that A ⊂ [0, 1] and the function f : A → R has finite β-variation. Then there are sets An ⊂ A such 
that for any n ∈N

+

f |An is α-Hölder continuous and dim

(
A \

∞⋃
n=1

An

)
≤ αβ.

Proof. For all n ∈N
+ let

An = {
x ∈ A : ∣∣ f (x + t) − f (x)

∣∣ ≤ 2tα for all t ∈ [0,1/n] ∩ (A − x)
}
.

As A is bounded, f |An is α-Hölder continuous for all n ∈ N
+ . Let

D =
{

x ∈ A : lim sup
t→0+

∣∣ f (x + t) − f (x)
∣∣t−α > 1

}
.

Clearly A \ ⋃∞
n=1 An ⊂ D , so it is enough to prove that dim D ≤ αβ . Let us fix δ > 0 arbitrarily. Then for all x ∈ D there is a 

0 < tx < δ such that∣∣ f (x + tx) − f (x)
∣∣ ≥ tαx . (4.1)

Define Ix = [x − tx, x + tx] for all x ∈ D . By Besicovitch’s covering theorem (see [11, Thm. 2.7]) there is a number p ∈N
+ not 

depending on δ and countable sets Si ⊂ D (i ∈ {1, . . . , p}) such that

D ⊂
p⋃

i=1

⋃
x∈Si

Ix and Ix ∩ I y = ∅ for all x, y ∈ Si, x �= y. (4.2)

Applying (4.1) and (4.2) implies that for all i ∈ {1, . . . , p}∑
x∈Si

|Ix|αβ = 2αβ
∑
x∈Si

tαβ
x ≤ 2αβ

∑
x∈Si

∣∣ f (x + tx) − f (x)
∣∣β ≤ 2αβ Varβ( f ). (4.3)

Eqs. (4.2) and (4.3) imply that

Hαβ
δ (D) ≤

p∑
i=1

∑
x∈Si

|Ix|αβ ≤ p2αβ Varβ( f ).

As Varβ( f ) < ∞ and δ > 0 was arbitrary, we obtain that Hαβ(D) < ∞. Hence dim D ≤ αβ , and the proof is complete. �
Proof of Theorem 1.2. Assume to the contrary that for some ε > 0 there is a random set A ⊂ [0, 1] such that, with positive 
probability, dim A ≥ β/2 + 2ε and B|A has finite β-variation. Let α = 1/2 + ε/β > 1/2. Applying Lemma 4.1 we obtain that 
there are sets An ⊂ A such that B|An is α-Hölder continuous for every n ∈N

+ and

dim

(
A \

∞⋃
n=1

An

)
≤ αβ = β

2
+ ε. (4.4)

As α > 1/2 and B|An are α-Hölder continuous, Theorem 1.1 implies that almost surely dim An ≤ 1/2 for all n ∈ N
+ , therefore 

(4.4) and the countable stability of the Hausdorff dimension yield that dim A ≤ β/2 +ε almost surely. This is a contradiction, 
and the proof is complete. �

Theorems 4.2 and 4.3 (with α = 1
2 ) imply that Theorem 1.2 is sharp for all β .

Theorem 4.2. (See Lévy’s modulus of continuity, [9], see also [12].) For the linear Brownian motion {B(t): 0 ≤ t ≤ 1}, almost surely,

lim sup
h→0+

sup
0≤t≤1−h

|B(t + h) − B(t)|√
2h log(1/h)

= 1.
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Theorem 4.3. Let 0 < α ≤ 1 and 0 < β ≤ 1
α be fixed. Then there is a compact set A ⊂ [0, 1] such that dim A = αβ and if f : [0, 1] →R

is a function and c ∈ (0, ∞) such that for all x, y ∈ [0, 1]
∣∣ f (x) − f (y)

∣∣ ≤ c|x − y|α log
1

|x − y| , (4.5)

then f |A has finite β-variation.

Proof. First we construct A. For all n ∈ N let

γn = 2−n/(αβ)(n + 1)−(β+2)/β .

We define intervals Ii1...in ⊂ [0, 1] for all n ∈ N and {i1, . . . , in} ∈ {0, 1}n by induction. We use the convention {0, 1}0 = {∅}. 
Let I∅ = [0, 1], and if the interval Ii1...in = [u, v] is already defined then let

Ii1...in0 = [u, u + γn+1] and Ii1...in1 = [v − γn+1, v].
Let

A =
∞⋂

n=0

⋃
(i1,...,in)∈{0,1}n

Ii1...in .

Assume that f : [0, 1] → R is a function satisfying (4.5). Now we prove that Varβ( f |A) < ∞. As diam Ii1...in = γn , the defini-
tion of γn and (4.5) imply that for all n ∈ N and (i1, . . . , in) ∈ {0, 1}n we have(

diam f (Ii1...in )
)β ≤ (

cγ α
n logγ −1

n

)β ≤ cα,β2−n(n + 1)−2, (4.6)

where cα,β ∈ (0, ∞) is a constant depending on α, β and c only. For all x, y ∈ A let n(x, y) be the maximal number n
such that x, y ∈ Ii1...in for some (i1, . . . , in) ∈ {0, 1}n . If {xi}k

i=0 is a monotone sequence in A and n ∈ N, then the number of 
i ∈ {1, . . . , k} such that n(xi−1, xi) = n is at most 2n . Therefore (4.6) implies that

Varβ( f |A) ≤
∞∑

n=0

2n(cα,β2−n(n + 1)−2) =
∞∑

n=1

cα,βn−2 < ∞.

Finally, we prove that dim A = αβ . The upper bound dim A ≤ αβ is obvious, thus we show only the lower bound. In the 
construction of A each (n − 1)st-level interval Ii1 ...in−1 contains mn = 2 nth-level intervals Ii1...in−1 i , which are separated by 
gaps of εn = γn−1 − 2γn . The definition of γn yields that 0 < εn+1 < εn for all n ∈ N

+ and εn = 2−n/(αβ)+o(n) . Applying [4, 
Example 4.6] we obtain that:

dim A ≥ lim inf
n→∞

log(m1 · · ·mn−1)

− log(mnεn)
= αβ,

and the proof is complete. �
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