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The aim of this note is to present a multi-dimensional numerical scheme approximating 
the solutions to the multilayer shallow-water model in the low-Froude-number regime. 
The proposed strategy is based on a regularized model where the advection velocity is 
modified with a pressure gradient in both mass and momentum equations. The numerical 
solution satisfies the dissipation of energy, which acts for mathematical entropy, and the 
main physical properties required for simulations within oceanic flows.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le but de cette note est de présenter un schéma numérique multi-dimensionnel rappro-
chant les solutions du modèle de Saint-Venant multi-couche en régime de faible nombre 
de Froude. La stratégie proposée est basée sur un modèle régularisé où la vitesse de 
transport est modifiée par un gradient de pression dans les équations de la masse et de 
la quantité de mouvement. La solution numérique satisfait la dissipation d’énergie, jouant 
le rôle de l’entropie du point de vue mathématique, et les principales propriétés physiques 
nécessaires aux simulations dans le cadre des écoulements océaniques.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The current note is devoted to the numerical resolution of the multilayer shallow-water model. Let us consider a set of 
L immiscible, homogeneous, inviscid, and incompressible superposed fluids with free surface and without surface tension. 
The pressure is assumed to be hydrostatic and constant at the free surface. In addition, we supposed that the vertical 
acceleration is small enough to make the flow satisfy the shallow-water assumption. The ith layer of fluids has a constant 
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density ρi , a thickness hi(t, x) and a depth-averaged horizontal velocity vi(t, x), with t ≥ 0 standing for the time variable 
and x = (x1, x2) ∈ R

2 the horizontal position. The governing equations are given by the multilayer shallow-water equations, 
i.e.

(SW)

⎧⎨⎩
∂thi + ∇x · (hi vi) = 0,

∂t(hi vi) + ∇x · (hi vi ⊗ vi) + hi

ρi
∇x pi = 0,

(1)

with g is the gravitational acceleration and the pressure being given by the hydrostatic relation, i.e. pi = g
∑L

j=1 ρmin(i, j)h j , 
with the layer numbered downwards from the free surface. The multi-layer shallow-water model (1) could be obtained 
from Euler equations by vertical averaging across the layer depth, see [2]. Previous studies presented the criterion of well-
posedness for the multilayer shallow-water model (1), see [7,11]. In particular, the layers should be organized with the 
heaviest at the bottom to the lightest at the top, i.e. ρ1 < ρ2 < · · · < ρL−1 < ρL . In addition, the vertical variation of velocity 
should be small enough in comparison to the layer thickness, more precisely a required condition for the hyperbolicity of 
(1) reads:

‖vi+1 − vi‖2

g(hi+1 + hi)
< 1 − ρi

ρi+1
. (2)

The main features of the multilayer shallow-water model are its mathematical structure, more precisely hyperbolic for 
reasonable regimes, and the underlying conservative laws. More precisely, the multilayer shallow-water model preserves the 
water volume of each layer (first equation of (1)), the momentum of the column of water

∂t

L∑
i=1

(ρihi vi) + ∇x ·
L∑

i=1

(ρihi vi ⊗ vi) + ∇xE = 0 (3)

and the total energy E = E +K (for smooth solutions)

∂t E + ∇x ·
L∑

i=1

(
(2Ei +Ki)vi

) = 0 (4)

where the potential energy is defined by E = ∑L
i=1 Ei with Ei = 1

2 hi pi and the kinetic energy is defined by K = ∑L
i=1 Ki

with Ki = 1
2 ρihi‖vi‖2.

In the current work, we are interesting in the application of the multilayer shallow-water model to describe an oceanic 
environment characterized by a weakly stratified density, i.e. 0 < 1 − ρi

ρi+1
� 1, see [9]. The multilayer shallow-water model 

could be used to describe weakly stratified flows assuming that the Froude number is small enough in a suitable referential 
such that the required condition (2) holds. Classical numerical schemes used to approximate shallow-water models, like 
Riemann solvers, require the estimation, or at least an upper bound, of the eigenvalues. In [5] and [1], the authors present a 
numerical strategy based on the estimation of the eigenvalues realized in [10]. This estimation is valid for weakly stratified 
density and in the two-layer case. It is hardly adaptable to an arbitrary number of layers and for all stratifications. In 
[3] and [4], the authors present a strategy to adapt the resolution of the mono-layer case, currently well known, to the 
multi-layer one. However, these solvers are well known to be too much dissipative in the low-Froude-number regime, and 
lead to restrictive CFL conditions in the context of oceanic flow.

To overcome these drawbacks, we adapt the numerical scheme presented in [8] for multiphasic Euler equations in the 
low-Mach-number regime. This strategy does not require the estimation of eigenvalues and is able to recover low-Mach 
number flows. The multilayer shallow-water model introduces new difficulties compared to multiphasic Euler equations. 
More precisely, the number of unknowns is larger since the velocities of each layer are not the same and the pressure term 
is not conservative in the multilayer shallow-water model.

2. Regularized model

As it is shown in [6], the low-Froude-number regime, by analogy with the low-Mach-number regime, requires the cen-
tered discretization of the pressure term. However, this discretization introduces a numerical source term of the discrete 
energy that leads to an unstable solution. To overcome this difficulty, the key point is to modify the convective discharge in 
both mass conservation and momentum balance such that the regularized model yields:

(SWε)

⎧⎪⎨⎪⎩
∂th

ε
i + ∇x · qε

i = 0,

∂t
(
hε

i vε
i

) + ∇x · (qε
i ⊗ vε

i

) + hε
i

ρi
∇x pε

i = 0.
(5)

The regularized model (5) still satisfies the conservation of the column of water (3), and instead of the conservation law (4), 
it satisfies the following total energy balance:
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∂t Eε + ∇x ·
L∑

i=1

((
2Eε

i +Kε
i

)qε
i

hε
i

)
=

L∑
i=1

(
qε

i − hε
i vε

i

) · ∇x pε
i . (6)

Choosing the effective discharge qε
i such that the right-hand side is negative, Eq. (6) leads to the dissipation of the total 

energy, which acts for the mathematical entropy of the system. More precisely, we set qε
i = hε

i vε
i − εγ Hε

ρi
∇xπ

ε
i with the 

regularizing pressure πε
i being a function of (hε

j ) j∈[[1,L]] , the total water elevation Hε = ∑L
i=1 hε

i , a dimensionless parameter 
γ > 0 defined further and a time scale ε > 0. Assuming that the regularizing function πε

i is smooth enough, the shallow-
water model (1) is formally recovered as the limit ε goes to zero. A trivial choice of the regularizing pressure is πε

i := pε
i

and leads to a notable estimation of the variation of the pressure, i.e.

T∫
0

∫
R2

εγ Hε
L∑

i=1

‖∇x pε
i ‖2

ρi
dx dt ≤

∫
R2

E(0, x)dx.

We discuss further about a more effective choice in term of computational efficiency.
Let consider a tessellation of R2 denote T. For any polygon k ∈ T, we denote by |k| its area and by Fk its set of edges. In 

addition, for any edge f ∈ Fk , we denote by | f | its length and by k f ∈ T the neighbor of k such that k ∩ k f = f . Similarly, 
we introduce a time discretization with �t the time step such that tn+1 = tn + �t . The numerical strategy presented in this 
work is based on a cell-centered finite volume methods, i.e. the numerical unknowns are, in each polygon k ∈ T and each 
layer 1 ≤ i ≤ L, the averaged value of the layer thickness hn

i,k and of the horizontal velocity vn
i,k , where the superscript n is 

relative to the discrete time tn .
The mass conservation of (5) could be compared to an advection–diffusion equation, which is classically discretized using 

an implicit time scheme with an upwind scheme decentered with respect to the velocity vn
i, f for the advection part and a 

centered scheme for the diffusion part. Then, the momentum balanced of (5) could be estimated explicitly. The numerical 
scheme reads:

hn+1
i,k − hn

i,k

�t
+ 1

|k|
∑
f ∈Fk

((
qn+1

i, f · nk
f

)out − (
qn+1

i, f · nk
f

)in)| f | = 0

hn+1
i,k vn+1

i,k − hn
i,k vn

i,k

�t
+ 1

|k|
∑
f ∈Fk

(
vn

i,k

(
qn+1

i, f · nk
f

)out − vn
i,k f

(
qn+1

i, f · nk
f

)in)| f | = − 1

|k|
hn+1

i,k

ρi

∑
f ∈Fk

pn+1
i, f | f | (7)

with the discrete effective discharge outgoing and coming in the volume k through the face f such as(
qn+1

i, f · nk
f

)out := hn+1
i,k

(
vi, f · nk

f

)+ + 2γ f
ε

�x f

Hn
f

ρi

(
δπn+1

i, f · nk
f

)− =: (qn+1
i, f · n

k f

f

)in

and the positive and negative part functions, 2φ± = |φ| ±φ ≥ 0. The following notations at the faces are used: 2φ f = φk +φk f

and 2δφ f = (φk f − φk)n
k
f so that φk = φ f − δφ f · nk

f with nk
f is the unit vector normal to the face f outward the control 

volume k. The characteristic length is defined by |∂k|�xk = |k| with |∂k| = ∑
f ∈Fk

| f |. In addition, the extremum values are 
defined by

φn
max = max

k∈T
max

i∈[[1,L]]
(
φn

i,k

)
, φn

min = min
k∈T

min
i∈[[1,L]]

(
φn

i,k

)
and δφn

max = max
f ∈F

max
i∈[[1,L]]

(∥∥δφn
i, f

∥∥)
.

From now on, we set the time scale ε := �t .
The main result of this note is the following stability result:

Proposition 1. Assume that there exists a density ρ > 0 such that the regularizing pressure πn+1
i,k satisfy

L∑
i=1

δπn+1
i, f · δpn+1

i, f

ρi
≥ ρ

(
g
∥∥δhn+1

f

∥∥)2
with δhn+1

f =
(hn+1

1,k f
− hn+1

1,k

2
, . . . ,

hn+1
L,k f

− hn+1
L,k

2

)

. (8)

Then, defining the diffusion parameter by

γ f = 1

2

( H̃n+1
f

Hn
f

+ Ṽ n
f �x f

g Hn
f �t

)
with H̃n+1

f = �x f

2

L∑
i=1

((hn+1
i,k

�xk
+

hn+1
i,k f

�xk f

) L∑
j=1

ρmin(i, j)

ρ

)
and

Ṽ n
f =

L∑ ρmin(i, j)

ρ
max

(∣∣vn
i,k · nk

f

∣∣, ∣∣vn
i,k f

· nk
f

∣∣) (9)

i=1
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and under the following CFL condition (vn
max + α

√
δπn+1

max
ρ1

) �t
�xmin

≤ β with

α = L

2

√
ρL

ρ

(
1 + �xmax

�xmin

)
and β = hn+1

min

2(hn+1
max + L ρL

ρ1

δπn+1
max

gρ )

,

the numerical strategy keeps the layer thickness non negative, satisfy the steady state of the lake at rest (hi, ui) = (C st, 0) and satisfies 
the dissipation of the discrete total energy En

k = ∑L
i=1(En

i,k +Kn
i,k)

En+1
k − En

k + �t

|k|
∑
f ∈Fk

L∑
i=1

(
Gn+1
K,i, f · nk

f + Gn+1
E,i, f · nk

f + �t

2ρi

( hn+1
i,k f

�xk f

− hn+1
i,k

�xk

)∥∥δpn+1
i, f

∥∥2
)

| f | ≤ 0

with the discrete potential energy being En
i,k = 1

2 hn
i,k pn

i,k, the discrete kinetic energy being Kn
i,k = 1

2 ρihn
i,k‖vn

i,k‖2 , the discrete flux of 
potential energy Gn+1

E,i, f and the discrete flux of kinetic energy Gn+1
K,i, f being respectively

Gn+1
E,i, f = pn+1

i, f qn+1
i, f · nk

f − δhn+1
i, f · δpn+1

i, f vn+1
i, f − hn+1

i, f δpn+1
i, f · nk

f

vn
i,k f

− vn
i,k

2
and

Gn+1
K,i, f = 1

2
ρi

∥∥vn
i,k

∥∥2(
qn+1

i, f · nk
f

)out − 1

2
ρi

∥∥vn
i,k f

∥∥2(
qn+1

i, f · nk
f

)in
.

In addition, the discrete water volume of each layer and the discrete momentum of the column of water are preserved (discrete version 
of (3)).

Note that the CFL condition of Proposition 1 is not optimal. However, in ocean environment, the water level is enough 
regular to make the celerity of the variation of pressure 

√
gδπmax

ρ small. In addition, the velocity vmax is small and make 
together the CFL condition of Proposition 1 not restrictive, contrary to the CFL of a Riemann scheme limited by the gravity 
wave 

√
ghmax, large in this context.

The current version of the numerical scheme satisfies the steady state of the lake at rest without topography or other 
source terms. In a further work [12], we present an extension of the scheme satisfying the conservation of the general 
steady state at rest and an adaptation to the geostrophic quasi-steady state.

On a practical point of view, the layer thickness equation is non-linear through the diffusion parameter γ f . We use a 
quasi-Newton fixed point estimating the diffusion parameter γ f with the layer thickness of the previous fixed point it-
eration. The resulting linear system corresponds to a M-matrix (linear advection–diffusion operator) easily solvable using 
classical numerical tools. However, for oceanic simulations, the number of layers L could be large and the system becomes 
costly to solve since the layer thickness equations are a priori coupled through the regularizing function πε

i . The com-
putational efficiency of the strategy could be notably improved using a scheme estimating independently layer thickness. 
The simple choice πε

i := gρihε
i satisfies hypothesis (8) of Proposition 1. In this way, the numerical scheme presents the 

advantage of the uncoupled Riemann strategy [3], while preserving the conservation law of the discrete momentum of the 
column of water and entropy dissipation. Eventually, the numerical strategy presented does not require any hypothesis on 
the flow regime as long as the flow is well stratified, i.e. ρ1 < · · · < ρL . More precisely, it could be used as well for strongly 
stratified densities with larger Froude numbers.

3. Numerical results

In this section, we compare the numerical solution obtained using (7) to the linear solution in a low-Froude number 
regime in a one-dimensional framework. The following numerical results are estimated using a coarse grid with 10 points 
by period, i.e. |k| = �x = 10−1. We consider the following initial condition in the whole 1D space:

h1 = 500 − cos(2πx), h2 = 500, v1 = v2 = 0,
ρ2

ρ1
= 1

2
.

In Fig. 1, we plot the interface elevations at x = 0 as a function of time. The reference solution (red line “Asymptotic 
solution”) is obtained by assuming that the solution is regular enough and neglecting terms of the order of the square of 
the Froude number. The numerical solution “Rusanov” (blue line with squares) are obtained using a Rusanov solver. For the 
best CFL condition (line with empty squares called “Rusanov CFL = 1”), the Rusanov scheme is not able to recover the large 
frequencies. The second simulation is obtained with a time step ten times smaller (line with filled squares called “Rusanov 
CFL = 0.1”) and leads to more dissipative results. Using a Riemann solver, the smaller the time step is, the more dissipative 
the resolution is. The numerical strategy (7) used with the diffusion parameter γ f given by (9) is denoted “LowFroude” in 
Fig. 1 (black line). The first simulation is obtained using the larger time step satisfying the CFL condition of Proposition 1
(black line without triangles called “LowFroude Stab”). The time step is too large to approach the gravity waves and the 
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Fig. 1. (Color online.) Interface elevations in function of time.

solution only recovers the main term of the solution, i.e. the averaged value of the layer thickness. The second simulation 
(black line with empty triangles called “LowFroude Grav CFL = 1”) is obtained setting the time step to the same order 
as the time step with a Riemann solver scheme. More precisely, we set �t = �x√

g H� with the characteristic layer thickness 
H� = 1000. The numerical energy dissipation is similar to the case with the Riemann solver “Rusanov CFL = 1”; however, the 
large frequencies are recovered. Finally, the last simulation is obtained using a fine time discretization, i.e. �t = 10−1 �x√

g H�

(black line with filled triangles “LowFroude Grav CFL = 0.1”) and leads to a better conservation of the system energy. Using 
the numerical scheme (7), the smaller the time step is, the less dissipative the resolution is.
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