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Let M: (0, 1) → [e, +∞) be a decreasing function such that 
∫ 1

0 log log M(y) dy < +∞. 
Consider the set HM of all functions u harmonic in P := {(x, y): x ∈ R

n−1, y ∈ R, |x| < 1,

|y| < 1} and satisfying |u(x, y)| ≤ M(|y|). We prove that HM is a normal family in P .
© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Soit M: (0, 1) → [e, +∞) une fonction décroissante telle que 
∫ 1

0 log log M(y) dy < +∞. 
Considérons l’ensemble H M de toutes les fonctions u qui sont harmoniques dans P :=
{(x, y) ∈ R

n : x ∈ R
n−1, y ∈ R, |x| < 1, |y| < 1} et satisfont |u(x, y)| ≤ M(|y|). On montre 

que H M est une famille normale dans P .
© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Let P be a rectangle (−a, a) × (−b, b) in R2 and let M : (0, b) → [e, +∞) be a decreasing function. Consider the set FM
of all functions f holomorphic in P such that | f (x, y)| ≤ M(|y|), (x, y) ∈ P . The classical Levinson theorem asserts that FM

is a normal family in P if 
∫ b

0 log log M(y) dy < +∞. We refer the reader to [4–8,13,14,16,17,19,20,22–24] for various proofs, 
history of the question and related topics. This statement is sharp, i.e. for regular (continuous and decreasing) majorants M , 
the family FM is normal if and only if 

∫ b
0 log log M(y) dy < +∞ (see [16], pp. 379–383 and [4]).

The function log+ x is defined by log+ x =
{

log x, x≥1
0, x≤1

. Our result is the following theorem, which extends the Levinson 
log log theorem for holomorphic functions to harmonic functions in Rn , n ≥ 2.

Theorem 0.1. Let Ω denote the set {(x, y) : x ∈R
n−1, y ∈R, |x| < R, |y| < H}, where R and H are some positive numbers. Suppose a 

function M : (0, H) →R+ is decreasing and
H∫

0

log+ log+ M(y)dy < +∞. (1)

Then the set HM of all functions u harmonic in Ω and satisfying |u(x, y)| ≤ M(|y|), (x, y) ∈ Ω , is uniformly bounded on any compact 
subset of Ω .
http://dx.doi.org/10.1016/j.crma.2014.09.019
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This result has been proved by Dyn’kin in [8] by a different method under some stronger regularity conditions imposed 
on M . For any compact set K ⊂ Ω , our approach provides an explicit estimate for supu∈HM

supK |u| in terms of M , K
and Ω . We obtain Theorem 0.1 as a corollary of the “holomorphic” Levinson theorem by a reduction to axially symmetric 
functions u. First, we prove Theorem 0.1 in dimension 4, which implies the 3-dimensional case. Then we reduce the case of 
odd n to the case n = 3. The case of even n follows by adding a dummy variable. The main obstacle, which appears in the 
higher-dimensional harmonic analog of the Levinson log log theorem, is the fact that log |∇u| is not necessarily subharmonic 
for a general harmonic function u in Rn if n ≥ 3.

Some of the proofs of the “holomorphic” Levinson log log theorem are of a complex nature, some use implicitly or 
explicitly harmonic measure estimates in cusp-like domains, but most of the proofs require the monotonicity condition 
on M , except for the brilliant idea due to Domar (see [6,7,16]), which avoids any regularity assumptions on M , even the 
monotonicity. We will sketch Domar’s proof in Section 1, and use it to obtain explicit uniform estimates for HM in higher 
dimensions.

Let d(x, y) denote the Euclidean distance between x and y in Rn . For any X, Y ⊂ R
n put d(X, Y ) := inf{d(x, y) : x ∈ X,

y ∈ Y }. The symbol λn will denote the n-dimensional Lebesgue measure.

1. Domar’s argument

Theorem 1.1. Let f be a holomorphic function in a rectangle P := (−a,a) × (−b,b). Suppose that a function M(y) satisfies ∫ b
−b log+ log+ M(y) dy < +∞ and | f (x + iy)| ≤ M(y) for all (x, y) ∈ P . Then for any compact set K ⊂ P , there exists a constant 

C = C(M, d(K , ∂ P )) such that supK | f | < C.

Theorem 1.1 immediately follows from the next lemma on subharmonic functions, since log | f | is subharmonic.

Lemma 1.2. Let v be a subharmonic function in a rectangle P := (−a,a) × (−b,b). Suppose that a function M̃ satisfies ∫ b
−b log+ M̃(y) dy < +∞ and v(x + iy) ≤ M̃(y) for all (x, y) ∈ P . Then for any compact set K ⊂ P , there exists a constant 

C = C(M̃, d(K , ∂Ω)) such that supK v ≤ C.

Sketch of the proof. Let F (t) := λ1({y ∈ (−b, b): M̃(y) ≥ t}) denote the complementary cumulative distribution func-
tion of M̃(y). The logarithmic integral condition 

∫ b
−b log+ M̃(y) dy < +∞ can be reformulated in terms of F , namely ∑+∞

i=0 F (2i) < +∞ if 
∫ b
−b log+ M̃(y) dy < +∞ (see [16], pp. 378–379). Then there exists a positive number C such that

+∞∑
i=−1

F
(
2iC

)
<

π

8
d(K , ∂ P ). (2)

Our aim is to show that supK v ≤ C . Assume the contrary. Suppose there is z0 ∈ K with v(z0) > C . Let At denote the set 
{z ∈ P : v(z) ≥ t}.

Proposition 1.1. If a point z ∈ P satisfies v(z) ≥ C with C > 0, and d(z, ∂ P ) > 8
π F (C/2), then there is a ζ ∈ P such that d(z, ζ ) ≤

8
π F (C/2) and v(ζ ) ≥ 2C.

Consider the ball B centered at z with radius r = 8
π F (C/2). Note that B ⊂ P , since d(z, ∂ P ) > 8

π F (C/2). Now, the sub-
harmonicity of v will be exploited:

C≤ v(z) ≤ 1

λ2(B)

∫
B

v = 1

λ2(B)

( ∫
B\AC/2

v +
∫

B∩AC/2

v

)
≤ C/2 + 1

λ2(B)

∫
B∩AC/2

v.

Hence

C/2 ≤ 1

λ2(B)

∫
B∩AC/2

v ≤ 1

πr2
sup

B
v · λ2(B ∩ AC/2)

≤ 1

πr2
sup

B
v · λ1

({
x
∣∣ ∃y : (x, y) ∈ B ∩ AC/2

}) · λ1
({

y : ∃x : (x, y) ∈ B ∩ AC/2
})

≤ 1

πr2
sup

B
v · 2r F (C/2) = 1

4
sup

B
v.

Thus 2C ≤ supB v and the proposition is proved.
Using the proposition and taking z0 in place of z and C in place of C, we obtain a point z1 such that v(z1) ≥ 2C and 

d(z1, z0) ≤ 8 F (C/2). Recall that d(z0, ∂ P ) > 8 ∑+∞ F (2i C), hence d(z1, ∂ P ) > 8 ∑+∞ F (2i C). Exploiting the proposition 
π π i=−1 π i=0
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infinitely many times, we obtain a sequence {zi}+∞
i=0 such that v(zi) ≥ 2i C and d(zi, zi+1) ≤ 8

π F (2i−1C). By (2) {zi} has a 
limit point z ∈ P , hence v(z) ≥ limi→∞ v(zi) = +∞, and a contradiction has been obtained. �
Remark 1. Domar’s argument also provides explicit estimates in Theorem 1.1 of C(M, d(K , ∂ P )). Put F (t) := λ1({y :
log+ M(y) ≥ t}). If C > 0 and d(K , ∂ P ) > 8

π

∑+∞
i=−1 F (2i C), then | f | ≤ exp(C) on K .

2. Axially symmetric harmonic functions

Consider Rn = {x = (x1, . . . , xn) : xi ∈ R}. By ρ we denote 
√∑n−1

i=1 x2
i and h := xn . A function u defined in Rn is called 

axially symmetric if u = u(ρ, h), i.e. u is invariant under orthogonal transformations of the first (n − 1) coordinates. An 
axially symmetric harmonic function u satisfies the following equation (equation for the axially symmetric potentials):

∂2u

∂ρ2
+ ∂2u

∂h2
+ n − 2

ρ

∂u

∂ρ
= 0. (3)

We are going to use two ideas. The first one reduces axially symmetric harmonic functions in R4 to ordinary harmonic 
functions in R2. The second trick reduces axially symmetric harmonic functions in R2k+3 to harmonic functions in R3. It 
will help in dimension n ≥ 5. We refer the reader to [1,9,10,15,21,25] and references therein, where these and related ideas 
appear in a different context. However, we are not able to locate their origin.

2.1. From R4 to R2

Suppose u is an axially symmetric harmonic function in an axially symmetric domain Ω ⊂ R
4. Consider the set Ω̃+ ⊂ R

2

defined by x ∈ Ω ⇐⇒ (ρ(x), h(x)) ∈ Ω̃+ . It is easy to see from (3) that the function

ũ(ρ,h) = ρu
(|ρ|,h

)
(4)

is harmonic in Int Ω̃+ . Define Ω̃− by x ∈ Ω ⇐⇒ (−ρ(x), h(x)) ∈ Ω̃− . Let Ω̃ be the union of Ω̃+ and Ω̃− . Then Ω̃ is a 
domain in R2, symmetric with respect to the line ρ = 0. By the Schwarz reflection principle, we see that (4) defines an odd 
(with respect to ρ) harmonic function in Ω̃ .

2.2. From R2k+3 to R3

Let u = u(ρ, h) be an axially symmetric harmonic function in R2k+3. Put

v(ϕ,ρ,h) = ρkeikϕu(ρ,h), (5)

where (ϕ, ρ, h) are cylindrical coordinates in R3. Then v is a harmonic (complex-valued) function in R3. Indeed, 	v =
∂2 v
∂ρ2 + 1

ρ
∂v
∂ρ + 1

ρ2
∂2 v
∂ϕ2 + ∂2 v

∂h2 = 0 +ρkeikϕ( ∂2u
∂ρ2 + ∂2u

∂h2 + 2k+1
ρ

∂u
∂ρ ) = 0. The last argument shows that v is harmonic in R3 \{ρ = 0}. 

Note that v is continuous up to the line {ρ = 0}, which is a removable singularity for bounded harmonic functions (see [2], 
p. 200). Thus v is harmonic in R3.

3. Proof of Theorem 0.1

Proof of the case n = 4. Fix ε > 0: R, H > ε. Take any x0 ∈ R
n−1 with |x0| < R − ε. Consider any function u from HM . It 

is sufficient to show that there is C = C(M, H, ε) such that |u(x0, h)| ≤ C for any h: |h| < H − ε. Denote the set {(x, y): x ∈
R

n−1, y ∈ R, |x| < ε, |y| < H} by Pε and consider the function ũ : Pε → R defined by ũ(x, y) = u(x − x0, y). Note that 
|ũ(x, y)| ≤ M(|y|) on Pε .

Let us make an axial symmetrization step. Denote by O (3) the group of orthogonal transformations in R3, let dS be 
the Haar measure on O (3). For any g ∈ O (3) we use the notation ũg for the function ũ(gx, y). It is clear that ũg is 
harmonic in Pε , ũg(0, y) = ũ(0, y) = u(x0, y) and |ũg(x, y)| ≤ M(|y|) on Pε . Put w(x, y) := ∫

O (3)
ũg(x, y) dS(g), (x, y) ∈ Pε , 

it is evident that w also enjoys the properties from the preceding sentence and w = w(ρ, h) is axially symmetric. We have 
reduced the 4-dimensional case to the following lemma.

Lemma 3.1. Suppose w = w(ρ, h) is an axially symmetric harmonic function in the truncated cylinder Pε and |w(x, y)| ≤ M(|y|). 
Then there is a constant C = C(M, H, ε) such that |w(0, y)| < C for any y ∈ (−H + ε, H − ε).

Proof. Put v(ρ, h) := ρw(|ρ|, h). By Section 2.1, v is harmonic in (−ε, ε) × (−H, H). Denote ρ + ih by ζ and ∂v
∂ρ − i ∂v

∂h by f . 
Then f is a holomorphic function in (−ε, ε) × (−H, H). Denote the set (−ε/2, ε/2) × (−H + ε/2, H − ε/2) by P̃ε/2.
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Take any ζ = (ρ, h) ∈ P̃ε/2 with h ≤ ε and consider a disk Bh/2(ζ ) := {z : |z − ζ | < h/2}. Since |v(ρ, h)| ≤ M(|h|) and M
is decreasing sup{|v|(x): x ∈ Bh/2(ζ )} ≤ M(h/2). Applying standard Cauchy’s estimates of derivatives of harmonic functions, 
we obtain |∇v|(ζ ) ≤ C1

sup{|v|(x):x∈Bh/2(ζ )}
h/2 ≤ C2

M(h/2)
h . By C1, C2, C3 we will denote absolute constants, whose value is less 

than 100. We note that | f | = |∇v|. Hence | f |(ζ ) ≤ C2
M(h/2)

h .

If ζ ∈ P̃ε/2 with h ≥ ε, then Bε/4(ζ ) ⊂ (−ε, ε) × (−H, H). Using in a similar way Cauchy’s estimates, we ob-

tain | f (ζ )| ≤ C3
M(h/2)

ε . We therefore have | f (ζ )| ≤ max( 100
ε , 100

h )M(h/2) for any ζ ∈ P̃ε/2. Denote max( 100
ε , 100

h )M(h/2)

by M̃(h). It follows from the inequality log+ a + log+ b + log 2 ≥ log+(a + b) that 
∫ H
−H log+ log+ M(y) dy < +∞ implies ∫ H−ε/2

−H+ε/2 log+ log+ M̃(y) dy < +∞.

Now, we are in a position to apply Theorem 1.1 to the function f holomorphic in P̃ε/2 with the majorant M̃ , that gives 
us a positive constant C = C(M, H, ε): | f (0, h)| < C for h ∈ (−H + ε, H − ε). Recalling that v(ρ, h) = ρw(ρ, h), this yields 
|w(0, h)| = |vρ(0, h)| ≤ | f (0, h)| ≤ C(M, H, ε).

Remark 2. Let F̃ (t) denote λ1({h ∈ (−H + ε/2, H − ε/2) : max( 100
ε , 100

h )M(h/2) ≥ exp(t)}). Then C(M, H, ε) can be given 
explicitly in terms of F̃ in view of Remark 1. Namely, if ε/2 > 8

π

∑+∞
i=−1 F̃ (2i C) for a positive constant C , then u(x, y) ≤

exp(C) for all (x, y) with |x| ≤ R − ε, |h| ≤ H − ε.

Remark 3. The 4-dimensional case of Theorem 0.1 implies the 3-dimensional one (as well as the 2-dimensional), because 
we can always add a dummy coordinate to R3.

Proof of the case n ≥ 5. We will consider only the case of odd n = 2k + 3. Now, we know that Theorem 0.1 holds for 
n = 2, 3, 4. We will prove the case of odd n = 2k + 3 reducing it to the case n = 3 with the help of the idea discussed 
in Section 2.2. The case of even n follows immediately. As in the proof of 4-dimensional case we can perform the axial-
symmetrization step and Theorem 0.1 is reduced to the following lemma.

Lemma 3.2. Suppose u = u(ρ, h) is an axially symmetric harmonic function in a truncated cylinder Pε = {(x ∈R
n−1, y ∈R, |x| < ε,

|y| < H)} such that |u(x, y)| ≤ M(|y|). Then there is a constant C = C(n, M, H, ε) such that |u(0, y)| < C for y ∈ (−H + ε, H − ε).

Following Section 2.2 we consider a function v defined by v(ϕ, ρ, h) = Re(ρkeikϕu(ρ, h)) on the set {ϕ ∈ [0, 2π),

ρ ∈ [0, ε), h ∈ (−H + ε, H + ε)}, where v is harmonic. With the help of the 3-dimensional case of Theorem 0.1, we can 
obtain |v(ϕ, ρ, h)| < C(M, H, ε/2) for ϕ ∈ [0, 2π), ρ ∈ [0, ε/2), h ∈ (−H + ε/2, H − ε/2). Then for any h ∈ (−H + ε, H − ε)

and the ball B centered at the point (0, 0, h) with radius ε/2 we have supB |v| ≤ C(M, H, ε/2). Applying standard esti-

mates of the higher derivatives of harmonic functions we obtain ∂k

∂ρk v ≤ C(k)
C(M,H,ε/2)

(ε/2)k on the set {ϕ ∈ [0, 2π), ρ = 0,

h ∈ (−H + ε/2, H − ε/2)}, where C(k) is a constant depending only on dimension (n = 2k + 3). Take ϕ = ρ = 0 and see that 
∂k v
∂ρk (0, 0, h) = k!u(0, h). Thus |u(0, h)| ≤ C(k)

C(M,H,ε/2)

(ε/2)k for h ∈ (−H + ε, H + ε). �
Question on one-sided estimates. Suppose that z0 is a point in a square Q = (−1, 1) × (−1, 1) and M is a positive 

(decreasing and regular) function on (0, 1). Under what assumptions on M is the family F +
M of all functions f holomorphic 

in Q and satisfying Im( f (z)) ≤ M(| Im(z)|), f (z0) = 0 normal in Q ?

4. Application to the universal polynomial expansions of harmonic functions

Consider the unit ball B := B1(0) in Rn . Any function h harmonic in B admits a power series expansion h = ∑+∞
n=0 hn , 

where hn is a homogeneous harmonic polynomial of degree n. It is said that h belongs to the collection U H , of harmonic 
functions in B with universal homogeneous polynomial expansions, if for any compact set K ⊂ R

n \B with connected com-
plement and any harmonic function u in a neighborhood of K , there is a subsequence {Nk} of N such that 

∑Nk
0 hn → u

uniformly on K . This class of universal functions has been studied in [3,11,12,18]. The following statement improves Theo-
rem 7 from [11] on the boundary behavior of functions from U H .

Theorem 4.1. Let ψ : [0, 1) → R
+ be an increasing function such that 

∫ 1
0 log+ log+ ψ(t) dt < +∞. If h = ∑+∞

n=0 hn enjoys |h(x)| ≤
ψ(|x|) on Br(ω) ∩B for some ω ∈ ∂B and r > 0, then f /∈ U H .

We won’t prove Theorem 4.1 here, because all necessary ingredients of the proof with one exception are given in [11], 
where Theorem 4.1 is proved under the stronger assumption 

∫ 1
0 log+ ψ(t) dt < +∞ in place of 

∫ 1
0 log+ log+ ψ(t) dt < +∞. 

The only missing ingredient in [11], which allows us to replace one log by log log, is the “harmonic” analog of the Levinson 
log log theorem in higher dimensions (its version in a ball, which follows from Theorem 0.1 with the help of the Kelvin 
transform).
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