Complex analysis/Partial differential equations

On the higher dimensional harmonic analog of the Levinson log log theorem

Sur l'analogue harmonique du théorème $\log \log$ de Levinson pour plusieurs dimensions

Alexander Logunov

Saint Petersburg State University, Chebyshev Laboratory, 14th Line 29B, Vasilyevsky Island, St. Petersburg, Russia

A R T I CLE IN F O

Article history:

Received 6 August 2014
Accepted after revision 23 September 2014
Available online 1 October 2014
Presented by Jean-Pierre Kahane

Abstract

Let $M:(0,1) \rightarrow[e,+\infty)$ be a decreasing function such that $\int_{0}^{1} \log \log M(y) \mathrm{d} y<+\infty$. Consider the set \mathcal{H}_{M} of all functions u harmonic in $P:=\left\{(x, y): x \in \mathbb{R}^{n-1}, y \in \mathbb{R},|x|<1\right.$, $|y|<1\}$ and satisfying $|u(x, y)| \leq M(|y|)$. We prove that \mathcal{H}_{M} is a normal family in P. © 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Soit $M:(0,1) \rightarrow[e,+\infty)$ une fonction décroissante telle que $\int_{0}^{1} \log \log M(y) \mathrm{d} y<+\infty$. Considérons l'ensemble H_{M} de toutes les fonctions u qui sont harmoniques dans $P:=$ $\left\{(x, y) \in \mathbb{R}^{n}: x \in \mathbb{R}^{n-1}, y \in \mathbb{R},|x|<1,|y|<1\right\}$ et satisfont $|u(x, y)| \leq M(|y|)$. On montre que H_{M} est une famille normale dans P.
© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Let P be a rectangle $(-a, a) \times(-b, b)$ in \mathbb{R}^{2} and let $M:(0, b) \rightarrow[e,+\infty)$ be a decreasing function. Consider the set \mathcal{F}_{M} of all functions f holomorphic in P such that $|f(x, y)| \leq M(|y|),(x, y) \in P$. The classical Levinson theorem asserts that \mathcal{F}_{M} is a normal family in P if $\int_{0}^{b} \log \log M(y) \mathrm{d} y<+\infty$. We refer the reader to [4-8,13,14,16,17,19,20,22-24] for various proofs, history of the question and related topics. This statement is sharp, i.e. for regular (continuous and decreasing) majorants M, the family \mathcal{F}_{M} is normal if and only if $\int_{0}^{b} \log \log M(y) \mathrm{d} y<+\infty$ (see [16], pp. 379-383 and [4]).

The function $\log ^{+} x$ is defined by $\log ^{+} x=\left\{\begin{array}{ll}\log x, & x \geq 1 \\ 0, & x \leq 1\end{array}\right.$. Our result is the following theorem, which extends the Levinson $\log \log$ theorem for holomorphic functions to harmonic functions in $\mathbb{R}^{n}, n \geq 2$.

Theorem 0.1. Let Ω denote the set $\left\{(x, y): x \in \mathbb{R}^{n-1}, y \in \mathbb{R},|x|<R,|y|<H\right\}$, where R and H are some positive numbers. Suppose a function $M:(0, H) \rightarrow \mathbb{R}_{+}$is decreasing and

$$
\begin{equation*}
\int_{0}^{H} \log ^{+} \log ^{+} M(y) \mathrm{d} y<+\infty . \tag{1}
\end{equation*}
$$

Then the set \mathcal{H}_{M} of all functions u harmonic in Ω and satisfying $|u(x, y)| \leq M(|y|),(x, y) \in \Omega$, is uniformly bounded on any compact subset of Ω.

This result has been proved by Dyn'kin in [8] by a different method under some stronger regularity conditions imposed on M. For any compact set $K \subset \Omega$, our approach provides an explicit estimate for $\sup _{u \in \mathcal{H}_{M}} \sup _{K}|u|$ in terms of M, K and Ω. We obtain Theorem 0.1 as a corollary of the "holomorphic" Levinson theorem by a reduction to axially symmetric functions u. First, we prove Theorem 0.1 in dimension 4, which implies the 3-dimensional case. Then we reduce the case of odd n to the case $n=3$. The case of even n follows by adding a dummy variable. The main obstacle, which appears in the higher-dimensional harmonic analog of the Levinson $\log \log$ theorem, is the fact that $\log |\nabla u|$ is not necessarily subharmonic for a general harmonic function u in \mathbb{R}^{n} if $n \geq 3$.

Some of the proofs of the "holomorphic" Levinson $\log \log$ theorem are of a complex nature, some use implicitly or explicitly harmonic measure estimates in cusp-like domains, but most of the proofs require the monotonicity condition on M, except for the brilliant idea due to Domar (see $[6,7,16]$), which avoids any regularity assumptions on M, even the monotonicity. We will sketch Domar's proof in Section 1, and use it to obtain explicit uniform estimates for \mathcal{H}_{M} in higher dimensions.

Let $d(x, y)$ denote the Euclidean distance between x and y in \mathbb{R}^{n}. For any $X, Y \subset \mathbb{R}^{n}$ put $d(X, Y):=\inf \{d(x, y): x \in X$, $y \in Y\}$. The symbol λ_{n} will denote the n-dimensional Lebesgue measure.

1. Domar's argument

Theorem 1.1. Let f be a holomorphic function in a rectangle $P:=(-a, a) \times(-b, b)$. Suppose that a function $M(y)$ satisfies $\int_{-b}^{b} \log ^{+} \log ^{+} M(y) \mathrm{d} y<+\infty$ and $|f(x+\mathrm{i} y)| \leq M(y)$ for all $(x, y) \in P$. Then for any compact set $K \subset P$, there exists a constant $C=C(M, d(K, \partial P))$ such that $\sup _{K}|f|<C$.

Theorem 1.1 immediately follows from the next lemma on subharmonic functions, since $\log |f|$ is subharmonic.
Lemma 1.2. Let v be a subharmonic function in a rectangle $P:=(-a, a) \times(-b, b)$. Suppose that a function \tilde{M} satisfies $\int_{-b}^{b} \log ^{+} \tilde{M}(y) \mathrm{d} y<+\infty$ and $v(x+\mathrm{i} y) \leq \tilde{M}(y)$ for all $(x, y) \in P$. Then for any compact set $K \subset P$, there exists a constant $C=C(\tilde{M}, d(K, \partial \Omega))$ such that $\sup _{K} v \leq C$.

Sketch of the proof. Let $F(t):=\lambda_{1}(\{y \in(-b, b): \tilde{M}(y) \geq t\})$ denote the complementary cumulative distribution function of $\tilde{M}(y)$. The logarithmic integral condition $\int_{-b}^{b} \log ^{+} \tilde{M}(y) \mathrm{d} y<+\infty$ can be reformulated in terms of F, namely $\sum_{i=0}^{+\infty} F\left(2^{i}\right)<+\infty$ if $\int_{-b}^{b} \log ^{+} \tilde{M}(y) \mathrm{d} y<+\infty$ (see [16], pp. 378-379). Then there exists a positive number C such that

$$
\begin{equation*}
\sum_{i=-1}^{+\infty} F\left(2^{i} C\right)<\frac{\pi}{8} d(K, \partial P) \tag{2}
\end{equation*}
$$

Our aim is to show that $\sup _{K} v \leq C$. Assume the contrary. Suppose there is $z_{0} \in K$ with $v\left(z_{0}\right)>C$. Let A_{t} denote the set $\{z \in P: v(z) \geq t\}$.

Proposition 1.1. If a point $z \in P$ satisfies $v(z) \geq \mathcal{C}$ with $\mathcal{C}>0$, and $d(z, \partial P)>\frac{8}{\pi} F(\mathcal{C} / 2)$, then there is a $\zeta \in P$ such that $d(z, \zeta) \leq$ $\frac{8}{\pi} F(\mathcal{C} / 2)$ and $v(\zeta) \geq 2 \mathcal{C}$.

Consider the ball B centered at z with radius $r=\frac{8}{\pi} F(\mathcal{C} / 2)$. Note that $B \subset P$, since $d(z, \partial P)>\frac{8}{\pi} F(\mathcal{C} / 2)$. Now, the subharmonicity of v will be exploited:

$$
\mathcal{C} \leq v(z) \leq \frac{1}{\lambda_{2}(B)} \int_{B} v=\frac{1}{\lambda_{2}(B)}\left(\int_{B \backslash A_{\mathcal{C} / 2}} v+\int_{B \cap A_{\mathcal{C} / 2}} v\right) \leq \mathcal{C} / 2+\frac{1}{\lambda_{2}(B)} \int_{B \cap A_{\mathcal{C} / 2}} v .
$$

Hence

$$
\begin{aligned}
\mathcal{C} / 2 & \leq \frac{1}{\lambda_{2}(B)} \int_{B \cap A_{\mathcal{C} / 2}} v \leq \frac{1}{\pi r^{2}} \sup _{B} v \cdot \lambda_{2}\left(B \cap A_{\mathcal{C} / 2}\right) \\
& \leq \frac{1}{\pi r^{2}} \sup _{B} v \cdot \lambda_{1}\left(\left\{x \mid \exists y:(x, y) \in B \cap A_{\mathcal{C} / 2}\right\}\right) \cdot \lambda_{1}\left(\left\{y: \exists x:(x, y) \in B \cap A_{\mathcal{C} / 2}\right\}\right) \\
& \leq \frac{1}{\pi r^{2}} \sup _{B} v \cdot 2 r F(\mathcal{C} / 2)=\frac{1}{4} \sup _{B} v .
\end{aligned}
$$

Thus $2 C \leq \sup _{B} v$ and the proposition is proved.
Using the proposition and taking z_{0} in place of z and C in place of \mathcal{C}, we obtain a point z_{1} such that $v\left(z_{1}\right) \geq 2 C$ and $d\left(z_{1}, z_{0}\right) \leq \frac{8}{\pi} F(C / 2)$. Recall that $d\left(z_{0}, \partial P\right)>\frac{8}{\pi} \sum_{i=-1}^{+\infty} F\left(2^{i} C\right)$, hence $d\left(z_{1}, \partial P\right)>\frac{8}{\pi} \sum_{i=0}^{+\infty} F\left(2^{i} C\right)$. Exploiting the proposition
infinitely many times, we obtain a sequence $\left\{z_{i}\right\}_{i=0}^{+\infty}$ such that $v\left(z_{i}\right) \geq 2^{i} C$ and $d\left(z_{i}, z_{i+1}\right) \leq \frac{8}{\pi} F\left(2^{i-1} C\right)$. By (2) $\left\{z_{i}\right\}$ has a limit point $z \in P$, hence $v(z) \geq \lim _{i \rightarrow \infty} v\left(z_{i}\right)=+\infty$, and a contradiction has been obtained.

Remark 1. Domar's argument also provides explicit estimates in Theorem 1.1 of $C(M, d(K, \partial P))$. Put $F(t):=\lambda_{1}(\{y$: $\left.\log ^{+} M(y) \geq t\right\}$). If $C>0$ and $d(K, \partial P)>\frac{8}{\pi} \sum_{i=-1}^{+\infty} F\left(2^{i} C\right)$, then $|f| \leq \exp (C)$ on K.

2. Axially symmetric harmonic functions

Consider $\mathbb{R}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}$. By ρ we denote $\sqrt{\sum_{i=1}^{n-1} x_{i}^{2}}$ and $h:=x_{n}$. A function u defined in \mathbb{R}^{n} is called axially symmetric if $u=u(\rho, h)$, i.e. u is invariant under orthogonal transformations of the first ($n-1$) coordinates. An axially symmetric harmonic function u satisfies the following equation (equation for the axially symmetric potentials):

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{\partial^{2} u}{\partial h^{2}}+\frac{n-2}{\rho} \frac{\partial u}{\partial \rho}=0 \tag{3}
\end{equation*}
$$

We are going to use two ideas. The first one reduces axially symmetric harmonic functions in \mathbb{R}^{4} to ordinary harmonic functions in \mathbb{R}^{2}. The second trick reduces axially symmetric harmonic functions in $\mathbb{R}^{2 k+3}$ to harmonic functions in \mathbb{R}^{3}. It will help in dimension $n \geq 5$. We refer the reader to $[1,9,10,15,21,25$] and references therein, where these and related ideas appear in a different context. However, we are not able to locate their origin.

2.1. From \mathbb{R}^{4} to \mathbb{R}^{2}

Suppose u is an axially symmetric harmonic function in an axially symmetric domain $\Omega \subset \mathbb{R}^{4}$. Consider the set $\tilde{\Omega}_{+} \subset \mathbb{R}^{2}$ defined by $x \in \Omega \Longleftrightarrow(\rho(x), h(x)) \in \tilde{\Omega}_{+}$. It is easy to see from (3) that the function

$$
\begin{equation*}
\tilde{u}(\rho, h)=\rho u(|\rho|, h) \tag{4}
\end{equation*}
$$

is harmonic in Int $\tilde{\Omega}_{+}$. Define $\tilde{\Omega}_{-}$by $x \in \Omega \Longleftrightarrow(-\rho(x), h(x)) \in \tilde{\Omega}_{-}$. Let $\tilde{\Omega}$ be the union of $\tilde{\Omega}_{+}$and $\tilde{\Omega}_{-}$. Then $\tilde{\Omega}$ is a domain in \mathbb{R}^{2}, symmetric with respect to the line $\rho=0$. By the Schwarz reflection principle, we see that (4) defines an odd (with respect to ρ) harmonic function in $\tilde{\Omega}$.

2.2. From $\mathbb{R}^{2 k+3}$ to \mathbb{R}^{3}

Let $u=u(\rho, h)$ be an axially symmetric harmonic function in $\mathbb{R}^{2 k+3}$. Put

$$
\begin{equation*}
v(\varphi, \rho, h)=\rho^{k} \mathrm{e}^{\mathrm{i} k \varphi} u(\rho, h) \tag{5}
\end{equation*}
$$

where (φ, ρ, h) are cylindrical coordinates in \mathbb{R}^{3}. Then v is a harmonic (complex-valued) function in \mathbb{R}^{3}. Indeed, $\Delta v=$ $\frac{\partial^{2} v}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial v}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} v}{\partial \varphi^{2}}+\frac{\partial^{2} v}{\partial h^{2}}=0+\rho^{k} \mathrm{e}^{\mathrm{i} k \varphi}\left(\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{\partial^{2} u}{\partial h^{2}}+\frac{2 k+1}{\rho} \frac{\partial u}{\partial \rho}\right)=0$. The last argument shows that v is harmonic in $\mathbb{R}^{3} \backslash\{\rho=0\}$. Note that v is continuous up to the line $\{\rho=0\}$, which is a removable singularity for bounded harmonic functions (see [2], p. 200). Thus v is harmonic in \mathbb{R}^{3}.

3. Proof of Theorem 0.1

Proof of the case $\boldsymbol{n}=4$. Fix $\varepsilon>0: R, H>\varepsilon$. Take any $x_{0} \in \mathbb{R}^{n-1}$ with $\left|x_{0}\right|<R-\varepsilon$. Consider any function u from \mathcal{H}_{M}. It is sufficient to show that there is $C=C(M, H, \varepsilon)$ such that $\left|u\left(x_{0}, h\right)\right| \leq C$ for any $h:|h|<H-\varepsilon$. Denote the set $\{(x, y)$: $x \in$ $\left.\mathbb{R}^{n-1}, y \in \mathbb{R},|x|<\varepsilon,|y|<H\right\}$ by P_{ε} and consider the function $\tilde{u}: P_{\varepsilon} \rightarrow \mathbb{R}$ defined by $\tilde{u}(x, y)=u\left(x-x_{0}, y\right)$. Note that $|\tilde{u}(x, y)| \leq M(|y|)$ on P_{ε}.

Let us make an axial symmetrization step. Denote by O (3) the group of orthogonal transformations in \mathbb{R}^{3}, let $d S$ be the Haar measure on $O(3)$. For any $g \in O$ (3) we use the notation \tilde{u}_{g} for the function $\tilde{u}(g x, y)$. It is clear that \tilde{u}_{g} is harmonic in $P_{\varepsilon}, \tilde{u}_{g}(0, y)=\tilde{u}(0, y)=u\left(x_{0}, y\right)$ and $\left|\tilde{u}_{g}(x, y)\right| \leq M(|y|)$ on P_{ε}. Put $w(x, y):=\int_{O(3)} \tilde{u}_{g}(x, y) \mathrm{d} S(g),(x, y) \in P_{\varepsilon}$, it is evident that w also enjoys the properties from the preceding sentence and $w=w(\rho, h)$ is axially symmetric. We have reduced the 4 -dimensional case to the following lemma.

Lemma 3.1. Suppose $w=w(\rho, h)$ is an axially symmetric harmonic function in the truncated cylinder P_{ε} and $|w(x, y)| \leq M(|y|)$. Then there is a constant $C=C(M, H, \varepsilon)$ such that $|w(0, y)|<C$ for any $y \in(-H+\varepsilon, H-\varepsilon)$.

Proof. Put $v(\rho, h):=\rho w(|\rho|, h)$. By Section 2.1, v is harmonic in $(-\varepsilon, \varepsilon) \times(-H, H)$. Denote $\rho+\mathrm{i} h$ by ζ and $\frac{\partial v}{\partial \rho}-\mathrm{i} \frac{\partial v}{\partial h}$ by f. Then f is a holomorphic function in $(-\varepsilon, \varepsilon) \times(-H, H)$. Denote the set $(-\varepsilon / 2, \varepsilon / 2) \times(-H+\varepsilon / 2, H-\varepsilon / 2)$ by $\tilde{P}_{\varepsilon / 2}$.

Take any $\zeta=(\rho, h) \in \tilde{P}_{\varepsilon / 2}$ with $h \leq \varepsilon$ and consider a disk $B_{h / 2}(\zeta):=\{z:|z-\zeta|<h / 2\}$. Since $|v(\rho, h)| \leq M(|h|)$ and M is decreasing $\sup \left\{|v|(x): x \in B_{h / 2}(\zeta)\right\} \leq M(h / 2)$. Applying standard Cauchy's estimates of derivatives of harmonic functions, we obtain $|\nabla v|(\zeta) \leq C_{1} \frac{\sup \left\{|v|(x): x \in B_{h / 2}(\zeta)\right\}}{h / 2} \leq C_{2} \frac{M(h / 2)}{h}$. By C_{1}, C_{2}, C_{3} we will denote absolute constants, whose value is less than 100. We note that $|f|=|\nabla v|$. Hence $|f|(\zeta) \leq C_{2} \frac{M(h / 2)}{h}$.

If $\zeta \in \tilde{P}_{\varepsilon / 2}$ with $h \geq \varepsilon$, then $B_{\varepsilon / 4}(\zeta) \subset(-\varepsilon, \varepsilon) \times(-H, H)$. Using in a similar way Cauchy's estimates, we obtain $|f(\zeta)| \leq C_{3} \frac{M(h / 2)}{\varepsilon}$. We therefore have $|f(\zeta)| \leq \max \left(\frac{100}{\varepsilon}, \frac{100}{h}\right) M(h / 2)$ for any $\zeta \in \tilde{P}_{\varepsilon / 2}$. Denote $\max \left(\frac{100}{\varepsilon}, \frac{100}{h}\right) M(h / 2)$ by $\tilde{M}(h)$. It follows from the inequality $\log ^{+} a+\log ^{+} b+\log 2 \geq \log ^{+}(a+b)$ that $\int_{-H}^{H} \log ^{+} \log ^{+} M(y) \mathrm{d} y<+\infty$ implies $\int_{-H+\varepsilon / 2}^{H-\varepsilon / 2} \log ^{+} \log ^{+} \tilde{M}(y) \mathrm{d} y<+\infty$.

Now, we are in a position to apply Theorem 1.1 to the function f holomorphic in $\tilde{P}_{\varepsilon / 2}$ with the majorant \tilde{M}, that gives us a positive constant $C=C(M, H, \varepsilon):|f(0, h)|<C$ for $h \in(-H+\varepsilon, H-\varepsilon)$. Recalling that $v(\rho, h)=\rho w(\rho, h)$, this yields $|w(0, h)|=\left|v_{\rho}(0, h)\right| \leq|f(0, h)| \leq C(M, H, \varepsilon)$.

Remark 2. Let $\tilde{F}(t)$ denote $\lambda_{1}\left(\left\{h \in(-H+\varepsilon / 2, H-\varepsilon / 2): \max \left(\frac{100}{\varepsilon}, \frac{100}{h}\right) M(h / 2) \geq \exp (t)\right\}\right)$. Then $C(M, H, \varepsilon)$ can be given explicitly in terms of \tilde{F} in view of Remark 1 . Namely, if $\varepsilon / 2>\frac{8}{\pi} \sum_{i=-1}^{+\infty} \tilde{F}\left(2^{i} C\right)$ for a positive constant C, then $u(x, y) \leq$ $\exp (C)$ for all (x, y) with $|x| \leq R-\varepsilon,|h| \leq H-\varepsilon$.

Remark 3. The 4 -dimensional case of Theorem 0.1 implies the 3 -dimensional one (as well as the 2 -dimensional), because we can always add a dummy coordinate to \mathbb{R}^{3}.

Proof of the case $\boldsymbol{n} \geq \mathbf{5}$. We will consider only the case of odd $n=2 k+3$. Now, we know that Theorem 0.1 holds for $n=2,3,4$. We will prove the case of odd $n=2 k+3$ reducing it to the case $n=3$ with the help of the idea discussed in Section 2.2. The case of even n follows immediately. As in the proof of 4 -dimensional case we can perform the axialsymmetrization step and Theorem 0.1 is reduced to the following lemma.

Lemma 3.2. Suppose $u=u(\rho, h)$ is an axially symmetric harmonic function in a truncated cylinder $P_{\varepsilon}=\left\{\left(x \in \mathbb{R}^{n-1}, y \in \mathbb{R},|x|<\varepsilon\right.\right.$, $|y|<H)\}$ such that $|u(x, y)| \leq M(|y|)$. Then there is a constant $\mathcal{C}=\mathcal{C}(n, M, H, \varepsilon)$ such that $|u(0, y)|<\mathcal{C}$ for $y \in(-H+\varepsilon, H-\varepsilon)$.

Following Section 2.2 we consider a function v defined by $v(\varphi, \rho, h)=\operatorname{Re}\left(\rho^{k} \mathrm{e}^{\mathrm{i} k \varphi} u(\rho, h)\right)$ on the set $\{\varphi \in[0,2 \pi)$, $\rho \in[0, \varepsilon), h \in(-H+\varepsilon, H+\varepsilon)\}$, where v is harmonic. With the help of the 3-dimensional case of Theorem 0.1 , we can obtain $|v(\varphi, \rho, h)|<C(M, H, \varepsilon / 2)$ for $\varphi \in[0,2 \pi), \rho \in[0, \varepsilon / 2), h \in(-H+\varepsilon / 2, H-\varepsilon / 2)$. Then for any $h \in(-H+\varepsilon, H-\varepsilon)$ and the ball B centered at the point ($0,0, h$) with radius $\varepsilon / 2$ we have $\sup _{B}|v| \leq C(M, H, \varepsilon / 2)$. Applying standard estimates of the higher derivatives of harmonic functions we obtain $\frac{\partial^{k}}{\partial \rho^{k}} v \leq C(k) \frac{C(M, H, \varepsilon / 2)}{(\varepsilon / 2)^{k}}$ on the set $\{\varphi \in[0,2 \pi), \rho=0$, $h \in(-H+\varepsilon / 2, H-\varepsilon / 2)\}$, where $C(k)$ is a constant depending only on dimension $(n=2 k+3)$. Take $\varphi=\rho=0$ and see that $\frac{\partial^{k} v}{\partial \rho^{k}}(0,0, h)=k!u(0, h)$. Thus $|u(0, h)| \leq C(k) \frac{C(M, H, \varepsilon / 2)}{(\varepsilon / 2)^{k}}$ for $h \in(-H+\varepsilon, H+\varepsilon)$.

Question on one-sided estimates. Suppose that z_{0} is a point in a square $Q=(-1,1) \times(-1,1)$ and M is a positive (decreasing and regular) function on (0,1). Under what assumptions on M is the family F_{M}^{+}of all functions f holomorphic in Q and satisfying $\operatorname{Im}(f(z)) \leq M(|\operatorname{Im}(z)|), f\left(z_{0}\right)=0$ normal in Q ?

4. Application to the universal polynomial expansions of harmonic functions

Consider the unit ball $\mathbb{B}:=B_{1}(0)$ in \mathbb{R}^{n}. Any function h harmonic in \mathbb{B} admits a power series expansion $h=\sum_{n=0}^{+\infty} h_{n}$, where h_{n} is a homogeneous harmonic polynomial of degree n. It is said that h belongs to the collection U_{H}, of harmonic functions in B with universal homogeneous polynomial expansions, if for any compact set $K \subset \mathbb{R}^{n} \backslash \mathbb{B}$ with connected complement and any harmonic function u in a neighborhood of K, there is a subsequence $\left\{N_{k}\right\}$ of \mathbb{N} such that $\sum_{0}^{N_{k}} h_{n} \rightarrow u$ uniformly on K. This class of universal functions has been studied in [3,11,12,18]. The following statement improves Theorem 7 from [11] on the boundary behavior of functions from U_{H}.

Theorem 4.1. Let $\psi:[0,1) \rightarrow \mathbb{R}^{+}$be an increasing function such that $\int_{0}^{1} \log ^{+} \log ^{+} \psi(t) \mathrm{d} t<+\infty$. If $h=\sum_{n=0}^{+\infty} h_{n}$ enjoys $|h(x)| \leq$ $\psi(|x|)$ on $B_{r}(\omega) \cap \mathbb{B}$ for some $\omega \in \partial \mathbb{B}$ and $r>0$, then $f \notin U_{H}$.

We won't prove Theorem 4.1 here, because all necessary ingredients of the proof with one exception are given in [11], where Theorem 4.1 is proved under the stronger assumption $\int_{0}^{1} \log ^{+} \psi(t) \mathrm{d} t<+\infty$ in place of $\int_{0}^{1} \log ^{+} \log ^{+} \psi(t) \mathrm{d} t<+\infty$. The only missing ingredient in [11], which allows us to replace one \log by $\log \log$, is the "harmonic" analog of the Levinson $\log \log$ theorem in higher dimensions (its version in a ball, which follows from Theorem 0.1 with the help of the Kelvin transform).

Acknowledgements

We are grateful to D. Khavinson for explaining the application of the "harmonic" analog of the Levinson $\log \log$ theorem to the boundary behavior of the universal power expansions of harmonic functions.

This research was sponsored by the grant of the Russian Science Foundation (project No. 14-21-00035).

References

[1] D.H. Armitage, On growth and decay of harmonic functions, Proc. R. Ir. Acad., Ser. A Math. Phys. Sci. 87 (2) (1987) 107-116.
[2] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, second edition, Grad. Texts Math., vol. 137, Springer-Verlag, New York, 2001.
[3] F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, C. Papadimitropoulos, Abstract theory of universal series and applications, Proc. Lond. Math. Soc. 96 (2008) 417-463.
[4] A. Beurling, Analytic continuation across a linear boundary, Acta Math. 128 (1971) 153-182.
[5] T. Carleman, Extension d'un théorème de Liouville, Acta Math. 48 (1926) 363-366.
[6] Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (5) (1958) 429-440.
[7] Y. Domar, Uniform boundness in families related to subharmonic functions, J. Lond. Math. Soc. (2) 38 (3) (1988) 485-491.
[8] E.M. Dyn'kin, An asymptotic Cauchy problem for the Laplace equation, Ark. Mat. 34 (1996) 245-264.
[9] P. Ebenfelt, D. Khavinson, On point to point reflection of harmonic functions across real-analytic hypersurfaces in R^{n}, J. Anal. Math. 68 (1996) 145-182.
[10] A. Erdelyi, Axially symmetric potentials and fractional integration, J. Soc. Ind. Appl. Math. 13 (1) (1965) 216-228.
[11] S.J. Gardiner, D. Khavinson, Boundary behaviour of universal Taylor series, C. R. Acad. Sci. Paris, Ser. I 352 (2) (2014) 99-103.
[12] P.-M. Gauthier, I. Tamptse, Universal overconvergence of homogeneous expansions of harmonic functions, Analysis 26 (2006) $287-293$.
[13] V.P. Gurarii, On N. Levinson's theorem on normal families of subharmonic functions, Zap. Nauč. Semin. POMI 19 (1970) $215-220$ (in Russian).
[14] R.J.M. Hornblower, A growth condition for the MacLane class, Proc. Lond. Math. Soc. 23 (1971) 371-384.
[15] D. Khavinson, On reflection of harmonic functions in surfaces of revolution, Complex Var. Theory Appl. 17 (1-2) (1991) 7-14.
[16] P. Koosis, The Logarithmic Integral. I, Camb. Stud. Adv. Math., vol. 12, Cambridge University Press, Cambridge, UK, 1988.
[17] N. Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, vol. 26, American Mathematical Society, New York, 1940.
[18] M. Manolaki, Universal polynomial expansions of harmonic functions, Potential Anal. 38 (2013) 985-1000.
[19] V.I. Matsaev, On the growth of entire functions that admit a certain estimate from below, Dokl. Akad. Nauk SSSR 132 (2) (1960) $283-286$ (in Russian); Translation in Sov. Math. Dokl. 1 (1960) 548-552.
[20] V.I. Matsaev, E.Z. Mogulskii, A division theorem for analytic functions with a given majorant, and some of its applications, Zap. Nauč. Semin. POMI 56 (1976) 73-89 (in Russian).
[21] V. Rao, A uniqueness theorem for harmonic functions, Mat. Zametki 3 (1968) 247-252 (in Russian).
[22] A.Yu. Rashkovskii, On radial projection of harmonic measure, in: V.A. Marchenko (Ed.), Operator Theory and Subharmonic Functions, Naukova Dumka, Kiev, 1991, pp. 95-102 (in Russian).
[23] A. Rashkovskii, Classical and new log log theorems, Expo. Math. 27 (4) (2009) 271-287.
[24] P.J. Rippon, On a growth condition related to the MacLane class, J. Lond. Math. Soc. (2) 18 (1) (1978) 94-100.
[25] A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1) (1953) 20-38.

