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We show that there is an obstruction to the existence of a star product defined by 
Kontsevich graphs without directed cycles.
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r é s u m é

Nous montrons qu’il y a une obstruction à l’éxistence d’une produit étoile défini par les 
graphes de Kontsevich sans cycle orienté.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The theory of deformation quantization [1] studies the existence and uniqueness of �-products, i.e., of associative R[h̄]
linear products on C∞(M)[[h̄]] (for M a smooth manifold) having the form

f � g = f g + h̄m1( f , g) + h̄2m2( f , g) + · · ·
where the m j are bidifferential operators. We are interested only in the case when M = R

d , d very large, and of m j de-
termined from a Poisson bivector field π by universal formulas, by which we mean Kontsevich graphs. See [3] for the 
definition of those graphs. In other words, we may replace a star product with a formal series of Kontsevich graphs

a = a0 + a1 + a2 + · · ·
for our purposes, where a0 is fixed to be the graph

a0 = .

The space of formal series of Kontsevich graphs forms a graded Lie algebra and the condition of associativity of the star 
product translates into the Maurer–Cartan equation

[a,a] = 0. (1)
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M. Kontsevich gave explicit formulas for a series of Kontsevich graphs satisfying (1), which we denote by

aK = aK
0 + aK

1 + aK
2 + aK

3 + aK
4 + · · ·

where aK
j is a linear combination of graphs with j type I vertices. In particular aK

0 = a0 and

aK
1 = 1

2
.

For the detailed construction of aK , we refer the reader to the original paper [3]. Kontsevich’s formal series gives rise to 
a star product on Rd , for finite d, but cannot be used to construct a star product in infinite dimensions, due to the existence 
of directed loops in graphs occurring in aK . It was asked whether the formula can be modified in such a manner that 
no graphs with directed loops occur. This question has been studied by S. Merkulov [4], who showed that a loopless star 
product cannot exist in the graded setting and by B. Shoikhet [6], who showed that a loopless formality morphism cannot 
exist.

This note contains a small calculation showing that a loopless star product does not exist in the non-graded situation 
either. The result is independently shown by G. Dito in the recent preprint [2] as well, using an earlier explicit calculation 
by Penkava and Vanhaecke [5]. The benefit of our calculation is that it is a little shorter, while not using the result of [5].

2. Star product

As indicated above, we call a universal star product a star product given by a formal sum of Kontsevich graphs, with two 
type-II vertices and with all type-I vertices having exactly two outgoing edges (see [3] for the notation). The type-I vertices 
formally represent copies of a Poisson bivector field π . We furthermore identify two linear combinations of graphs if they 
can be transformed to each other using only the (graphical version of the) Maurer–Cartan equation [π, π ] = 0 for a Poisson 
bivector field.

We shall try to construct a universal star product using only graphs without oriented loops. Note that for all star products 
a0 and a1 are fixed by definition, there is no choice. a2 is the same for all loopless star products and in this case uniquely 
determined by the MC equation. However, note that in the Kontsevich product aK

2 contains a loop graph, namely

with nonzero weight 4α, say. It can be removed by performing a gauge transformation using the graph

L = .

So we define

a := exp
(
2α[L, ·])aK = a0 + a1 + a2 + a3 + a4 + · · · .

Then a0 = aK
0 , a1 = aK

1 and a2 contains no graphs with directed cycles.
Now suppose that our other (desirably loopless) star product reads

b = a0 + a1 + a2 + (a3 + b3) + (a4 + b4) + · · · .
Then the Maurer–Cartan equation [b, b] = 0 implies in particular:

0 = [a0,b3]
0 = [a1,b3] + [a0,b4].

These imply:

0 = [a0,b3] (2)

0 = [a1,b3] modulo the image of [a0, ·]. (3)

Claim: For any solution b3 to (2) and (3), the sum a3 + b3 contains graphs with directed cycles.
Solvability is unchanged if we add some expression [a0, X] to b3, since [a0, a1] = 0. Hence we can assume that b3 is in 

fact in the image of the (graphical version of the) Hochschild–Kostant–Rosenberg map. In other words, it is composed of 
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graphs for which both type II vertices have valence 1, and which are antisymmetric under interchange of these vertices. 
So we may just omit the type II vertices and adjacent edges in drawings, they can be uniquely recovered. We have the 
following 4 candidate graphs:

A = B = C = D = .

Of these, graphs A, C and D have weight 0 in the Kontsevich star product aK . Graph B has non-zero weight −β , say 
(see [7,8] for a computation of β). The graph A attains non-zero weight −α in a3 due to the gauge transformation, while 
the weights of the other graphs remain unchanged. It follows that in order for a3 + b3 to be loopless, b3 must be a linear 
combination of graphs A and B , namely b3 = αA + βB . Let us insert this b3 into Eq. (3). We obtain:

0 = 2α + 2α + α + α

+ 2β + 2β + β

= ±2β ± 2(α + β) .

For the last line, one must use that [π, π ] = 0. One checks that this combination of graphs non-zero, irrespective of 
the values of the non-zero numbers α, β .2 Hence we arrive at a contradiction and the claim is shown. Note again that all 
vertices should be understood as having two outgoing edges. If they have less in the drawing, one must add other outgoing 
edges to type-II vertices. As a direct corollary of the claim, we arrive at our main result:

Theorem 1. Any formal series of Kontsevich graphs defining a universal star product necessarily contains a graph with oriented cycles.
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