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We show that a positivity improving property of multilinear operators with Gaussian 
kernels can be determined, with sharp constants, by testing Gaussian functions only. This 
result can be considered as a reversed form of Lieb’s theorem on maximizers of Gaussian 
kernels.
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r é s u m é

Nous montrons qu’une propriété d’amélioration de la positivité par les opérateurs 
multilinéaires à noyaux gaussiens peut être déterminée, avec des constantes exactes, 
en testant l’opérateur uniquement sur les fonctions gaussiennes. Ce résultat peut être 
considéré comme une forme inverse du théorème de Lieb sur les maximiseurs des noyaux 
gaussiens.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

The existence, uniqueness and structure of maximizers of integral operators with Gaussian kernels was studied in details 
by Lieb in [16]. His results allowed one to recover several important inequalities as the sharp Hausdorff–Young inequal-
ity [8], or Gaussian hypercontractivity [18]. They also provided the first proof of the multidimensional Brascamp–Lieb 
inequality [11], a multilinear inequality that unifies many classical facts in Analysis (e.g., the Loomis–Whitney inequal-
ity [17], the sharp Young convolution inequality [8,11]) and is a rich source of applications in convex geometry [2–4]. See 
e.g. [13,9,12,7,15,14] for recent developments. One of Lieb’s theorems, the closest in spirit to the findings of this note, en-
sures that if p1, . . . , pm ∈ (1, ∞), then the norm of a multilinear integral functional with a real Gaussian kernel, acting on 
functions from Lpi spaces, can be determined by testing the functional on centered Gaussian functions. More specifically, 
let m ≥ 1 be an integer and H , H1, . . . , Hm be Euclidean spaces endowed with the usual Lebesgue measure. For i = 1, . . . , m
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set ci = 1/pi ∈ (0, 1) and let Bi: H → Hi be a surjective linear map. Further, let Q : H → H be self-adjoint and positive 
semidefinite. For integrable functions f i: Hi → [0, ∞) with 

∫
Hi

f i > 0 define

J ( f1, . . . , fm) =
∫

H e−π 〈x,Q x〉 ∏m
i=1 f ci

i (Bi x)dx∏m
i=1(

∫
Hi

f i)
ci

. (1)

Then the result of Lieb asserts that

sup
f1,..., fm

J ( f1, . . . , fm) = sup
g1,...,gm

J (g1, . . . , gm), (2)

where gi is a centered Gaussian function, i.e. a function of the form e−〈x,Ai x〉 where Ai: Hi → Hi is positive definite.
Our main result can be considered as a reversed version of Lieb’s principle (2). Namely, throughout the rest of this 

note, let 0 ≤ m+ < m be integers, c1, . . . , cm+ > 0, cm++1, . . . , cm < 0, Bi: H → Hi be surjective linear maps as above, and 
Q : H → H be any self-adjoint operator with s+(Q ) positive eigenvalues (counting with multiplicities). Consider the func-
tional J defined by (1) acting on positive integrable functions f1, . . . , fm . In the presence of negative exponents ci (for 
i > m+), we will be concerned with minimizing the functional J , as the classical examples of the reversed Hölder and the 
reversed Young inequality suggest (see e.g. [11,6] and the example below).

Theorem 1.1. If c1, . . . , cm+ > 0, cm++1, . . . , cm < 0 with 0 ≤ m+ < m and

s+(Q ) + dim H1 + · · · + dim Hm+ ≤ dim H (3)

then with notation of (1),

inf
f1,..., fm>0

J ( f1, . . . , fm) = inf
g1,...,gm

J (g1, . . . , gm), (4)

where gi is a centered Gaussian function. Moreover, if (3) does not hold then either J ( f1, . . . , fm) = ∞ for any positive integrable 
f1, . . . , fm or inf f1,..., fm>0 J ( f1, . . . , fm) = 0.

Remark. Recently, Chen, Dafnis and Paouris [14] obtained a similar result using semigroup methods and Gaussian analysis. 
While especially the Gaussian formulation of their inequality (see [14, Theorem 1]) is very appealing, it is less general than 
our result. Indeed, it covers only a specific family of Gaussian kernels e−π 〈x,Q x〉 , for which a geometric condition (discussed 
in Section 2) or its linearly equivalent form (see e.g. [9, Section 3]) is satisfied.

Examples. The Borell’s reverse Gaussian hypercontractivity [10] states that for any p, q ∈ (−∞, 1) the operators of the 
Ornstein–Uhlenbeck semigroup Pt f (x) = ∫

f (e−t x + √
1 − e−2t y)γ (dy), where γ is a standard Gaussian measure, satisfy

‖Pt f ‖Lq(γ ) ≥ ‖ f ‖L p(γ )

for all positive functions f ∈ L1(γ ) if and only if e−2t ≤ 1−p
1−q . For negative indices p, q, the above inequality quantifies a 

property of positivity improvement along the semigroup. Excluding the case when either p, q or t is 0 and using the fact 
that for q ∈ (−∞, 1) and h ∈ Lq , ‖h‖Lq = inf{∫ hk: k > 0, 

∫
kq′ = 1} where q′ = q/(q − 1), the above estimate can be restated 

in terms of a lower bound on a bilinear integral functional: with x = (x1, x2) ∈ R
2, c1 = 1/p, c2 = 1/q′ ∈ R \ [0, 1] and 

Q = 1
1−e−2t

( 1−(1−e−2t )c1 −e−t

−e−t 1−(1−e−2t )c2

)
,

∫
R2

e− 1
2 〈x,Q x〉 f c1(x1)gc2(x2)dx ≥ (2π)1− c1+c2

2

√
1 − e−2t

(∫
f

)c1(∫
g

)c2

(5)

holds for any positive integrable functions f , g if and only if c1c2 det Q ≥ 0. It is easy to check that for any c1, c2 ∈ R \ [0, 1], 
c1c2 det Q ≥ 0 implies the hypothesis (3) and thus in the light of Theorem 1.1, (5) can be verified by testing on centered 
Gaussian functions f and g .

Another instance of Theorem 1.1 is the sharp reversed Young inequality [11,6], which describes the best C p,q such that 
for any p, q, r ∈ (0, 1] satisfying 1/p + 1/q = 1 + 1/r and any positive functions f ∈ Lp(R), g ∈ Lq(R),

‖ f ∗ g‖Lr(R) ≥ C p,q‖ f ‖L p(R)‖g‖Lq(R). (6)

Also, using the same method as the one used in [11] to derive the Prékopa–Leindler inequality from (6), the reverse 
Brascamp–Lieb inequality of [5] can be recovered as a limit case of Theorem 1.1.



F. Barthe, P. Wolff / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 1017–1021 1019
2. Optimal constants and the geometric condition

For given Gaussian functions g Ai (x) = e−π 〈x,Ai x〉 , where Ai: Hi → Hi is positive definite, it is easy to compute 
J (g A1 , . . . , g Am ). Namely, let

Λ =
{
(A1, . . . , Am): Ai: Hi → Hi and Q +

∑
i≤m

ci B∗
i Ai Bi: H → H are positive definite

}
.

If (A1, . . . , Am) ∈ Λ then

J (g A1 , . . . , g Am ) =
(

det(Q + ∑
i≤m ci B∗

i Ai Bi)∏
i≤m(det Ai)

ci

)−1/2

(7)

and if (A1, . . . , Am) /∈ Λ then clearly J (g A1 , . . . , g Am ) = ∞. Therefore the infimum of J over centered Gaussian functions as 
on the right-hand side of (4) equals D−1/2, where

D = sup

{
det(Q + ∑

i≤m ci B∗
i Ai Bi)∏

i≤m(det Ai)
ci

: (A1, . . . , Am) ∈ Λ

}
(8)

and D = 0 (and thus D−1/2 = ∞) if Λ = ∅. As for classical Brascamp–Lieb inequalities, the above constant can be effectively 
computed when the following geometric condition holds:

∀i ≤ m Bi B∗
i = idHi , Q +

∑
i≤m

ci B∗
i Bi = idH . (9)

Proposition 2.1. If (3) and (9) hold true then the supremum in (8) is attained for (A1, . . . , Am) = (idH1 , . . . , idHm ) and thus D = 1.

3. Ideas of the proofs

For the proof of Theorem 1.1, we follow the monotone transportation method from [5]. However, while implementing a 
Gaussian kernel Q (which was not considered in [5]) is rather straightforward, the fact that some of the exponents ci are 
negative is the reason why a part of the argument is substantially different from the original case where all the exponents 
are positive.

First of all, observe that we can assume:{
x ∈ H: 〈x, Q x〉 ≤ 0

} ∩
⋂

i≤m+
ker Bi = {0}, (10)

otherwise J ≡ ∞. Next, if (10) holds while (3) does not, then inf J = 0, as can be seen by considering Gaussian functions 
(by (10), Λ �= ∅; then take any (A1, . . . , Am) ∈ Λ and the corresponding centered Gaussian functions g Ai ; if (3) fails then 
one can find i ≤ m+ such that translating the center of mass of g Ai to infinity forces J → 0). Therefore in the sequel we 
shall assume both (3) and (10).

Next, introduce a functional I that can be regarded as dual to J . Namely, let H+ ⊆ H (and H− ⊆ H) be a linear span 
of eigenspaces corresponding to positive (resp. negative) eigenvalues of Q , and B+: H → H+ (resp. B−: H → H−) be such 
that B∗+ (resp. B∗−) is a canonical embedding of H+ (resp. H−) into H , and Q +: H+ → H+ and Q −: H− → H− are uniquely 
determined by

Q = B∗+ Q +B+ − B∗− Q −B−.

Note that Q + and Q − are positive definite. Finally, for measurable functions hi: Hi → [0, ∞] (i = 1, . . . , m) satisfying 
0 <

∫
Hi

hi < ∞ define

I(h1, . . . ,hm) =
∫ ∗

H inf{e−π(〈y+,Q −1+ y+〉−〈y−,Q −1− y−〉) ∏
i≤m hci

i (yi): B∗+ y+ − B∗− y− + ∑
i≤m ci B∗

i yi = y}dy∏
i≤m(

∫
Hi

hi)
ci

·

Since the functions hi are allowed to attain values in [0, ∞], we assume the convention that whenever 0 · ∞ occurs in 
the product 

∏
i≤m hci

i (yi), it is understood as ∞. It will also be convenient to extend the definition of the functional J to 
measurable functions f i with values in [0, ∞] and satisfying 0 <

∫
Hi

f i < ∞ with the convention that if 0 · ∞ occurs in the 
product 

∏
i≤m f ci

i (Bi x) then it is 0.
The value of I on centered Gaussian functions can be computed using the following lemma, which is an analog of 

[5, Lemma 2] in the presence of negative exponents ci .



1020 F. Barthe, P. Wolff / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 1017–1021
Lemma 3.1. For each index i let ci ∈ R \ {0} and Bi: H → Hi be a surjective linear map. Assume the map (Bi)i:ci>0: H → ⊕
i:ci>0 Hi

is a linear isomorphism. Fix any (Ai)i , where Ai: Hi → Hi are positive definite and let A = ∑
ci B∗

i Ai Bi . If A is positive definite then

∀y ∈ H,
〈
y, A−1 y

〉 = sup
{∑

ci
〈
yi, A−1

i yi
〉
:
∑

ci B∗
i yi = y

}
.

Note that (3) and (10) imply that the map (B+, B1, . . . , Bm+ ): H → H+ ⊕ H1 ⊕ · · · ⊕ Hm+ is a linear isomorphism; thus 
we can use Lemma 3.1 to obtain that for (A1, . . . , Am) ∈ Λ,

I(g A−1
1

, . . . , g A−1
m

) =
(

det(Q + ∑
i≤m ci B∗

i Ai Bi)∏
i≤m(det Ai)

ci

)1/2

. (11)

The main result easily follows from the following theorem.

Theorem 3.2. If (3) and (10) hold and D < ∞, then for any measurable functions f i, hi: Hi → [0, ∞] satisfying 
∫

Hi
f i = ∫

Hi
hi = 1

(i = 1, . . . , m),

J ( f1, . . . , fm) ≥ D−1 I(h1, . . . ,hm). (12)

Using (8), (7), (11) and (12), under the hypothesis of Theorem 3.2 we obtain:

1√
D

= inf
(A1,...,Am)∈Λ

J (g A1 , . . . , g Am) ≥ inf J ≥ D−1 sup I ≥ D−1 sup
(A1,...,Am)∈Λ

I(g A−1
1

, . . . , g A−1
m

) = 1√
D

.

Sketch of the proof of Theorem 3.2. An approximation argument allows us to restrict the study to the following classes of 
functions: f i for i ≤ m+ and hi for i > m+ are positive and Lipschitz in a centered closed ball B̄ Hi (0, Ri) and zero outside the 
ball, whereas f i for i > m+ and hi for i ≤ m+ are positive and Lipschitz in the whole Hi . Next, due to Caffarelli’s regularity 
theory of Brenier’s maps (see, e.g., [1]), there exists a strictly convex function ϕi , of the class C2(B Hi (0, Ri)) for i ≤ m+ and 
C2(Hi) for i > m+ , such that the map x �→ Ti(x) := ∇ϕi(x) pushes forward the measure f i(x)dx onto the measure hi(y)dy.

In case of the functions ϕi for i ≤ m+ , we shall work with their convex, lower semi-continuous extensions ϕ̄i to the 
whole Hi as ∞ outside B̄ Hi (0, Ri) and lim infy→x ϕi(y) for x ∈ bd B Hi (0, Ri). Since ∇ϕi: B Hi (0, Ri) → Hi is surjective for 
i ≤ m+ , by an elementary convexity reasoning we obtain that a subdifferential ∂ϕ̄i(x) = ∅ for any x /∈ B Hi (0, Ri). For the 
functions ϕi for i > m+ note that they are Lipschitz (their gradient is bounded).

In the presence of a non-trivial kernel Q , we shall also consider two convex functions, ϕ+(x) = 1
2 〈x, Q +x〉 and 

ϕ−(x) = 1
2 〈x, Q −x〉. Note that T+ := ∇ϕ+: H+ → H+ is a linear map, which pushes forward the Gaussian measure 

(det Q +)1/2e−π 〈x,Q +x〉dx onto (det Q +)−1/2e−π 〈y,Q −1+ y〉dy (and similarly T− := ∇ϕ−).
Next, consider the convex functions Φ+: H →R ∪ {∞} and Φ−: H →R defined by

Φ+(x) = ϕ+(B+x) +
∑

i≤m+
ciϕ̄i(Bi x), Φ−(x) = ϕ−(B−x) +

∑
i>m+

(−ci)ϕi(Bi x),

and the function Φ(x) = Φ+(x) −Φ−(x). Note that Φ+ is convex, lower semi-continuous and restricted to a convex, open set 
S := ⋂

i≤m+ B−1
i (B Hi (0, Ri)) is C2. Moreover, a subdifferential ∂Φ+(x) = ∅ for any x /∈ S . Further consider the map θ : S → H ,

θ(x) := ∇Φ(x) = Q x +
∑
i≤m

ci B∗
i T i(Bi x).

Let S+ be a subset of S on which the differential

dθ(x) = ∇2Φ(x) = Q +
∑
i≤m

ci B∗
i dTi(Bi x)Bi

is positive semidefinite. Note that (8) can be used to bound from above det dθ(x) for x ∈ S+ . Following the approach of [5], 
we perform the change of variable y = θ(x) in the integral defining I(h1, . . . , hm). Since we aim at an upper bound on 
I(h1, . . . , hm), the only ingredient needed to make the argument work is the surjectivity of θ |S+ : S+ → H . To this end, take 
any y0 ∈ H and apply the following elementary lemma to the functions Φ+ and Φ− + 〈y0, ·〉:

Lemma 3.3. Let f : H → R ∪ {∞} be convex, lower semi-continuous and g: H → R be convex. If the subdifferential ∂ f (x) = ∅ at 
every x /∈ int{ f < ∞} and f (x) − g(x) → ∞ as |x| → ∞, then f − g attains its infimum at an interior point of { f < ∞}.
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The hypothesis (10) and the fact that ϕi are Lipschitz for i > m+ (∇ϕi ∈ B Hi (0, Ri)) imply that Φ(x) − 〈y0, x〉 → ∞ as 
|x| → ∞. Therefore the above lemma yields that Φ(x) − 〈y0, x〉 attains its infimum at a point x0 ∈ int{Φ+ < ∞} = S . Since 
Φ − 〈y0, ·〉 is C2 in S , it means that ∇Φ(x0) = y0 and ∇2Φ(x0) is positive semidefinite, hence that x0 ∈ S+ . �
Sketch of the proof of Proposition 2.1. The geometric condition (9) implies that the right-hand side of (8), considered as a 
function on Λ, has its extremum for Ai = idHi . To show that it has actually the maximum there, we establish its concavity 
property.

Lemma 3.4. Let N ≥ n = dim H and u1, . . . , uN ∈ H. If u1, . . . , un form a basis in H then

Ω =
{

(x1, . . . , xN) ∈R
N :

n∑
i=1

exi ui ⊗ ui −
N∑

i=n+1

exi ui ⊗ ui is positive definite

}

is an open convex subset of RN and the function ψ: Ω → R,

ψ(x1, . . . , xN) = log det

(
n∑

i=1

exi ui ⊗ ui −
N∑

i=n+1

exi ui ⊗ ui

)

is concave. �
This lemma has a counterpart in the case of all positive exponents, namely φ(x) = log det(

∑
exi ui ⊗ ui) is convex on RN . 

While the convexity of φ is a consequence of the Cauchy–Binet formula and of the Cauchy–Schwarz inequality (see [5]), in 
our case tools from matrix analysis are needed.
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