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We present two proofs that for a smooth projective separably rationally connected 
variety over an algebraically closed field H1(X, OX ) = 0. The second, cohomological proof 
generalises to varieties admitting a free curve of higher genus.
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r é s u m é

Nous présentons deux démonstrations de la nullité de H1(X, OX ) pour les variétés 
projectives, lisses, séparablement rationnellement connexes, sur un corps algébriquement 
clos. La seconde, cohomologique, se généralise aux variétés ayant une courbe libre de genre 
supérieur.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement

We call a variety rationally connected if there passes a rational curve through every two general points and separably 
rationally connected if there exists a morphism f : P1 → X such that f ∗T X is an ample vector bundle. In characteristic 
zero, these notions coincide, whereas they differ in characteristic p. Over an algebraically closed field of characteris-
tic zero, a smooth projective separably rationally connected variety X has Hi(X, OX ) = 0 for i > 0 from Hodge theory (see 
[5, p. 249]). In a recent preprint, Biswas and dos Santos [1] prove a result that easily implies that in arbitrary characteristic, 
at least H1(X, OX ) = 0.

Theorem. (See [1, Theorem 1.1].) Let X be a smooth projective separably rationally connected variety over k, an algebraically closed 
field. Let E be a vector bundle over X such that for each k-morphism f : P1 → X, the pullback f ∗E is trivial. Then E itself is trivial.

The claim on vanishing of first cohomology can be seen as follows. Pick a class in H1(X, OX ) = Ext1(OX , OX ) corre-
sponding to a vector bundle E of rank two. After pulling back to any f : P1 → X , we obtain:

0 → OP1 → f ∗E → OP1 → 0.
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It follows that f ∗E is split since H1(P1, OP1 ) = 0. Now from the main theorem in [1], E must itself be trivial. In positive 
characteristic we give another (cohomological) proof that at least H1(X, OX ) = 0, which is a special case of the following.

Theorem. Let X be a smooth projective variety over an algebraically closed field k and f : C → X a morphism from a smooth projective 
curve such that f ∗T X is an ample bundle. Then H1(X, OX ) = 0.

It should be noted that not much is known about the groups Hi(X, OX ) for smooth separably rationally connected vari-
eties where i > 1 in positive characteristic. In the case of smooth Fano threefolds, Shepherd and Barron [12, Corollary 1.5]
proved that Hi(X, OX ) = 0 for i > 0. It is also shown (ibid. Corollary 12.4) that at least in the case of Picard rank one, Fano 
threefolds are liftable to characteristic zero, so they are separably rationally connected (in general Fano varieties are only 
rationally chain connected) and hence satisfy the conditions of the theorem above. Smooth separably unirational (hence 
separably rationally connected) threefolds have been shown (see [11, Theorem 2.5]) to have Hi(X, OX ) = 0 for i = 1, 2, 3. 
In higher dimension, Kollár [8, Theorem 11] has shown that there exist singular Fano varieties in positive characteristic that 
are not even separably uniruled (see also [9, Chapter V]), yet although it is open whether smooth Fanos are all separably 
rationally connected, at least a general Fano hypersurface is so by [14, Theorem 1.4]. On the other hand, Fano varieties that 
are also liftable to W2(k) satisfy Kodaira vanishing by Deligne–Illusie and hence have Hi(X, OX ) = 0 for i > 0, but it is not 
known whether Fano varieties satisfy Kodaira vanishing (see [10, Remark 3.5]).

2. Proof of the theorem

For the proof of the main theorem, we proceed as follows. In a similar fashion to the case where C = P1, one proves 
H0(X, Ωm

X ) = 0 for m > 0 (see [6, Proposition 7.4]), essentially by noting that we can cover X by the images of embeddings 
(see [9, Theorem II.1.8]) from C where the restriction T X |C is ample. Over C, the theorem now follows as in the case of P1

from Hodge theory. Note that a theorem of Bogomolov and MacQuillan [2,7] in characteristic zero proves that the existence 
of a curve satisfying the conditions of the theorem implies the existence of a very free f : P1 → X . In positive characteristic, 
however, this is not known, nor is it known that X is rationally connected (see [6] for a discussion in this direction). 
One can construct examples of f : C → X with f ∗T X ample by starting with a very free curve P1 → X and precomposing 
with a finite map C → P1. In fact, in dimension three and above, a general deformation of such a morphism f will be an 
embedding (see [9, Theorem II.1.8]).

The main structure of our proof in positive characteristic follows mutatis mutandis from the proof of Theorem 2.1 in 
Nygaard’s paper [11]. Consider the Artin–Schreier sequence of étale sheaves on X :

0 → Fp →Ga
F−1−−→Ga → 0.

The cohomologies of Ga and OX agree and since the latter is coherent, étale and Zariski cohomology agree, hence we may 
assume that all cohomology groups are taken in the étale site. We obtain an exact sequence

0 → H1(X,Fp) → H1(X,OX )
F−1−−→ H1(X,OX ) → 0

where the last map is surjective due to SGA7.XXII Proposition 1.2. Suppressing base points, we use a method of Suwa [13]
to show that a p-group in the étale fundamental group π1(X) is trivial. In the case of C = P1, Kollár has proved that π1(X)

is trivial using the de Jong–Starr Theorem, see [5, Corollaire 3.6] (also [1, Remark 2.5] for a correction), although in the case 
of higher genus C , the étale fundamental group could a priori be infinite (the author expects this is not the case however). 
Suwa, using a computation in crystalline cohomology, first proves that the vanishing of global differential forms implies 
that hi

p = dim Hi(X, Qp) = 0 for i > 0 from which χp(X) = ∑
i(−1)ihi

p = 1. This result hence also holds in our setup. Note 
now that pulling back f : C → X under an étale cover Y → X gives a smooth projective curve (possibly of higher genus) 
g : C ′ → Y with g∗TY also ample. Now, let π1(X) → G be any finite quotient, Y → X the finite étale cover corresponding 
to G and let Y → Z be the degree pr subcover corresponding to a p-Sylow in G . From the discussion before, both Y and 
Z admit morphisms from curves whose pullback of the tangent bundle is ample and so have χp = 1. By Crew’s formula 
([4], Corollary 1.7), χp(Y ) = prχp(Z) hence pr = deg(Y /Z) = 1. Hence we have obtained that there are no non-trivial étale 
covers of order dividing p (see [3] for a similar argument). Since maps π1(X) → Fp correspond to étale covers of order 
dividing p, we have Hom(π1(X), Fp) = 0.

Now H1(X, Fp) = Hom(π1(X), Fp) = 0 and by SGA7.XXII Corollaire 2.1, the semi-simple component of H1(X, OX ) un-
der the endomorphism induced by Frobenius F is isomorphic to H1(X, Fp) ⊗ k, which is trivial. Hence F is nilpotent on 
H1(X, OX ). The injectivity of the map of the corresponding sheaves induces H0(X, OX/FOX ) → H0(X, Ω1

X ) = 0 and so 
from the cohomology of the short exact sequence

0 → OX
F−→ OX → OX/FOX → 0

we obtain that F : H1(X, OX ) → H1(X, OX ) is injective. Since F is thus injective and nilpotent on first cohomology, the 
result follows.
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