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In this work, an intrinsic projectively invariant distance is used to establish a new approach 
to the study of projective geometry in a Finsler space. It is shown that the projectively 
invariant distance previously defined is a constant multiple of the Finsler distance when 
the manifold in question is both forward and backward complete. As a consequence, 
two projectively related complete Einstein Finsler spaces with constant negative scalar 
curvature are homothetic. Evidently, this will be true for Finsler spaces of constant flag 
curvature as well.
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r é s u m é

Dans ce travail, une distance intrinsèque projectivement invariante est utilisée pour établir 
une nouvelle approche en vue de l’étude de la géométrie projective dans les espaces de 
Finsler. Il est démontré que la distance projectivement invariante définie précédemment 
est un multiple constant de la distance finslérienne dans le cas où celle-ci est complète 
(à la fois en avant et en arrière). Par conséquent, deux espaces d’Einstein–Finsler complets 
à courbure scalaire constante négative sont homothétiques. Évidemment, ceci sera vrai 
aussi pour les espaces de Finsler à courbure sectionelle constante.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Two regular metrics on a manifold are said to be pointwise projectively related if they have the same geodesics as the 
point sets. Two regular metric spaces are said to be projectively related if there is a diffeomorphism between them such that 
the pull-back of one metric is pointwise projective to the other. Let γ be a geodesic of a metric space. In general, the pa-
rameter t of γ (t) does not remain invariant under the projective changes. There is a unique parameter up to linear fractional
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transformations which is projectively invariant. This parameter is referred to, in the literature, as projective parameter. See 
[4,10] for a survey. The projective parameter together with the Poincaré metric is used to establish a projectively invari-
ant pseudo-distance in Finsler spaces. Next a comparison theorem on Ricci curvatures shows that this pseudo-distance is 
a distance. The Ricci tensor was introduced in Riemannian spaces in 1904 by G. Ricci and nine years later, it was used 
to formulate Einstein’s theory of gravitation [5]. In the present work, we use the notion of Ricci curvature introduced by 
Akbar–Zadeh, cf. [1]. Hence a Finsler metric is said to be Einstein if the Ricci scalar Ric is a function of x alone. Equivalently, 
Rici j = Ric(x)gij .

Without pretending to be exhaustive, we bring a few results related to our approach to Einstein–Finsler spaces. If M is 
simply connected endowed with a complete metric connection such that the symmetric part of the Ricci curvature of the 
associated symmetric connection is of Einstein type, that is, R(i j) = cgij , where c is a positive constant and, if M admits a 
projective group leaving invariant the trace of torsion, then M is homeomorphic to an sphere, cf. [2]. In [11], Z. Shen found 
out that two pointwise projectively equivalent Einstein–Finsler metrics F and F̄ on an n-dimensional compact manifold M
have Einstein constants of the same sign. In addition, if two pointwise projectively related Einstein metrics are complete 
with negative Einstein constants, then one of them is a multiple of the other. Later in a joint work, he proved that if 
two projectively related Riemannian metrics g and ḡ on a manifold M have Ricci curvatures satisfying R̄ic ≤ Ric and g
is complete, then the projective change is affine [7]. Recently, G. Yang generalized this comparison on Ricci curvatures of 
Finsler spaces and got some interesting results about the length of geodesics and the completeness of the space [12]. Here, 
inspired by Kobayashi’s work [8], the projectively invariant distance in complete Einstein spaces is studied and it is proved 
that the intrinsic distance is a constant multiple of the Finslerian distance. Consequently the topology generated by the 
intrinsic distance coincide with that of Finslerian distance and, in a new approach, we find out the known fact that two 
projectively related complete Einstein–Finsler spaces with constant negative Ricci scalar are homothetic, cf. [11].

2. Preliminaries

Let M be an n-dimensional C∞ connected manifold. Denote by TxM the tangent space at x ∈ M , and by T M :=⋃
x∈M TxM the bundle of tangent spaces. Each element of T M has the form (x, y), where x ∈ M and y ∈ TxM . The nat-

ural projection π : T M → M , is given by π(x, y) := x. The pull-back tangent bundle π∗T M is a vector bundle over the slit 
tangent bundle T M0 := T M\{0}, for which the fiber π∗

v T M at v ∈ T M0 is just Tx M , where π(v) = x.
A (globally defined) Finsler structure on M is a function F : T M → [0, ∞) with the properties; (I) regularity: F is C∞

on the entire slit tangent bundle T M0; (II) positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0; (III) strong convexity: 
The n × n Hessian matrix (gij) := ([ 1

2 F 2]yi y j ) is positive-definite at every point of T M0. For any y ∈ TxM0, the Hessian 
gij(y) induces an inner product g y in TxM by g y(u, v) := gij(y)ui v j . Let γ : [a, b] → M be a piecewise C∞ curve on (M, F )

with the velocity dγ
dt = dγ i

dt
∂

∂xi ∈ Tγ (t)M . The arc-length parameter of γ is given by s(t) = ∫ t
t0

F (γ , dγ
dr )dr, and the integral 

length is denoted by L(γ ) := ∫ b
a F (γ , dγ

dt )dt . For every x0, x1 ∈ M , denote by Γ (x0, x1) the collection of all piecewise C∞
curves γ : [a, b] → M with γ (a) = x0 and γ (b) = x1, and define a map dF : M × M → [0, ∞) by dF (x0, x1) := inf L(α), where 
α ∈ Γ (x0, x1). It can be shown that dF satisfies the first two axioms of a metric space. Namely, (I) dF (x0, x1) ≥ 0, where 
equality holds if and only if x0 = x1; (II) dF (x0, x1) ≤ dF (x0, x1) + dF (x1, x2).

We should remark that the distance function dF on a Finsler space does not have the symmetry property. If the Finsler 
structure F is absolutely homogeneous, that is F (x, λy) = |λ|F (x, y) for λ ∈ R, then one also has the third axiom of a 
metric space, (III) d(x0, x1) = d(x1, x0). The manifold topology coincides with that generated by the forward metric balls, 
B+

p (r) := {x ∈ M : dF (p, x) < r}. The latter assertion is also true for backward metric balls, B−
p (r), cf. [3]. Every Finsler metric 

F induces a spray G = yi ∂

∂xi − 2Gi(x, y) ∂

∂ yi on T M , where Gi(x, y) := 1
4 gil{[F 2]xk yl yk − [F 2]xl }. G is a globally defined vector 

field on T M . The projection of a flow line of G is called a geodesic on M . A curve γ (t) on M is a geodesic if and only if 
in local coordinate it satisfies d2xi

ds2 + 2Gi(x(s), dx
ds ) = 0, where s is the arc-length parameter. F is said to be forward (resp. 

backward) geodesically complete if any geodesic on an open interval (a, b) can be extended to a geodesic on (a, ∞) (resp. 
(−∞, b)). F is said to be complete if it is forward and backward complete. For a vector y ∈ TxM0, the Riemann curvature 
Ry : TxM → TxM is defined by Ry(u) = Ri

kuk ∂

∂xi , where Ri
k(y) := 2 ∂Gi

∂xk − ∂2Gi

∂ yk∂x j y j + 2G j ∂2Gi

∂ yk∂ y j − ∂Gi

∂ y j
∂G j

∂ yk .

For a two-dimensional plane P ⊂ T p M and a non-zero vector y ∈ T p M , the flag curvature K(P , y) is defined by 
K(P , y) := g y(u,Ry(u))

g y(y,y)g y(u,u)−g y(y,u)2 , where P = span{y, u}. F is said to be of scalar curvature K = λ(y) if for any y ∈ T p M , 
the flag curvature K(P , y) = λ(y) is independent of P containing y ∈ T p M . It is equivalent to the following system in a local 
coordinate system (xi, yi) on T M:

Ri
k = λF 2{δi

k − F −1 F yk yi}. (1)

If λ is a constant, then F is said to be of constant curvature. The Ricci scalar of F is a positive zero homogeneous function 
in y given by Ric := 1

F 2 Ri
i . This is equivalent to say that Ric(x, y) depends on the direction of the flag pole y but not on 

its length. The Ricci tensor of a Finsler metric F is defined by Rici j := { 1
2 Rk

k}yi y j , cf. [1]. If (M, F ) is a Finsler space with 
constant flag curvature λ, (1) leads to:
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Ric = (n − 1)λ, Rici j = (n − 1)λgij . (2)

A Finsler metric is said to be an Einstein metric if the Ricci scalar function is a function of x alone, equivalently Rici j =
Ric(x)gij .

2.1. Projective parameter and Schwarzian derivative

A Finsler space (M, F ) is said to be projective to another Finsler space (M, F̄ ) as a set of points, if and only if there 
exists a one-positive homogeneous scalar field P (x, y) on T M satisfying Ḡ i(x, y) = Gi(x, y) + P (x, y)yi . The scalar field 
P (x, y) is called the projective factor of the projective change under consideration. In general, the parameter t of a geodesic 
does not remain invariant under projective change of metrics. It is well known that there is a unique parameter up to the 
linear fractional transformations that is projectively invariant. This parameter is referred to, in the literature, as a projective 
parameter. The projective parameter, for a geodesic γ , is given by {π, s} = 2

n−1 Ric jk
dx j

ds
dxk

ds , where the operator {., .} is the 

Schwarzian derivative defined for a C∞ real function f on R, and for t ∈ R by { f , t} = f ′′′
f ′ − 3/2(

f ′′
f ′ )

2
, where f ′ , f ′′ , f ′′′ are 

first, second, and third derivatives of f with respect to t . It is invariant under all linear fractional transformations, namely 
{ af +b

cf +d , t} = { f , t}, where ad −bc 
= 0. A geodesic γ : I → M is said to be projective if its natural parameter on I is a projective 
parameter.

3. Projectively invariant intrinsic distance in complete Einstein spaces

Consider the open interval I = (−1, 1) with Poincaré metric ds2
I = 4du2

(1−u2)2 . The Poincaré distance between two points u0

and u1 in I is given by

ρ(a,b) =
∣∣∣∣ln

(1 − a)(1 + b)

(1 − b)(1 + a)

∣∣∣∣ = ∣∣ln(1,−1; u0, u1)
∣∣, (3)

where (1, −1; u0, u1) denotes the cross-ratio between u0 and u1 with respect to 1 and −1, cf., [9]. Now, we are in a 
position to define the pseudo-distance dM on a Finsler space (M, F ). Given any two points x, y ∈ M , we choose a chain α
of geodesic segments consisting of (I) a chain of points x = x0, x1, ..., xk = y on M , (II) pairs of points a1, b1, ..., ak, bk in I , 
(III) projective maps f1, ..., fk , f i : I → M , such that f i(ai) = xi−1, f i(bi) = xi , i = 1, ..., k. The length L(α) of the chain α
is defined to be L(α) = Σiρ(ai, bi). The pseudo-distance dM(x, y) is defined by dM(x, y) = inf L(α), where the infimum is 
taken over all chains α from x to y. It is well known dM remains invariant under the projective change of metrics and we 
have the following lemmas, cf., [10].

Lemma 3.1. (I) Let the geodesic f : I → M be a projective map, then ρ(a, b) ≥ dM( f (a), f (b)) for any a, b ∈ I . (II) Let δM be any 
pseudo-distance on M with the property ρ(a, b) ≥ δM( f (a), f (b)) for any a, b ∈ I , and for all projective maps f : I → M, then 
δM(x, y) ≤ dM(x, y) for any x, y ∈ M.

Lemma 3.2. Let (M, F ) be a Finsler space for which the Ricci tensor satisfies Rici j ≤ −c2 gij as matrices, for a positive constant c. Let 
dF (., .) be the distance induced by F , then for every projective map f : I → M, dF is bounded below by the Poincaré distance ρ , that 
is, ρ(a, b) ≥ 2c√

n−1
dF ( f (a), f (b)), ∀a, b ∈ I .

Proposition 3.1. Let (M, F ) be a Finsler space for which the Ricci tensor satisfies Rici j ≤ −c2 gij as matrices, for a positive constant c. 
Then the pseudo-distance dM is a distance.

Following the procedure described above by collecting properties of the projectively invariant distance dM , we are in a 
position to prove the following theorem.

Theorem 3.3. Let (M, F ) be a complete Einstein Finsler space with

Rici j = −c2 gij, (4)

where c is a positive constant. Then dM the projectively invariant distance is proportional to the Finslerian distance dF , that is:

dM(x, y) = 2c√
n − 1

dF (x, y). (5)

It would be noteworthy to remark that the constant c2 in (4) is of the order of (n − 1) because the Ricci scalar is the 
sum of (n − 1) flag curvatures, thus c is of the order of 

√
n − 1. This would make it plausible that in (5), the multiplier 

2c/
√

n − 1 is asymptotically independent of n.
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Proof. By means of the second part of Lemma 3.1 and Lemma 3.2, we have dF (x, y) 2c√
n−1k

≤ dM(x, y). To prove the assertion, 
it remains to show the converse. Given any two points x, y on M , we take a minimizing geodesic x(s) on M parameterized 
by an arc length s satisfying x = x(0) and y = x(a), where a is the Finslerian distance from x to y. A projective parameter 
π for this geodesic is defined to be a solution to the differential equation {π, s} = 2

n−1 Ric jk
dx j

ds
dxk

ds .

Let us consider the assumption (4) which leads to {π, s} = −2c2

n−1 g jk
dx j

ds
dxk

ds . For all curves parameterized by arc length 

g jk
dx j

ds
dxk

ds = 1, therefore {π, s} = −2c2

n−1 . The general solution to the latter equation is given by

π(s) = α e js + β e− js

γ e js + δ e− js
, (6)

where αδ − βγ 
= 0, and j = c√
n−1

. According to the first part of Lemma 3.1, the Poincaré distance ρ between the points 0
and π(a) in I , satisfies

ρ
(
0,π(a)

) ≥ dM(x, y). (7)

We consider the special solution to (6), that is π(s) = e js−e− js

e js+e− js . Thus π(−∞) = −1, π(0) = 0 and π(+∞) = 1. Plugging 
π(s) into (3) leads to ρ(0, π(a)) = |ln(

1+π(a)
1−π(a)

)| = 2 ja = 2ca√
n−1

. Therefore dM ≤ 2ca√
n−1

= 2c√
n−1

dF (x, y). This completes the 
proof. �

To present an explicit counterexample to Theorem 3.3, when completeness is violated, we consider the Finslerian–
Poincaré disc in the following example.

Example 1. Let M be the Euclidean open disc with radius 2 and centered at (0, 0) in R2 and F the Finslerian–Poincaré 
metric defined by F (V ) := √

ã(V , V ) + b̃(V ), for V ∈ TxM , where in polar coordinates ã := 1

(1− r2
4 )2

[dr ⊗ dr + r2dθ ⊗ dθ] and 

b̃ := d[ln (4+r2)

(4−r2)
] = r

(1+r2/4)(1−r2/4)
dr. It is well known that the Finslerian Poincaré metric is not backward complete. It is 

forward complete and of constant curvature K = −1/4, cf., [3], pp. 333–342. Geodesics of Poincaré disc have the following 
trajectories:

1) Euclidean circular arcs that intersect the boundary of the Poincaré disc at Euclidean right angles, where none of these 
can pass through the origin, 2) Euclidean straight rays that emanate from the origin, 3) Euclidean straight rays that aim 
towards the origin. We have dF (P , O ) = ln[ (2+ε)2

(4+ε2)
]. The ray that aims towards the origin is globally the shortest among all 

curves from P to O . Let us consider the point P = (0, 1). Assume that “s” is the arc-length parameter for the geodesic γ
emanating from the origin to P . The projective parameter for this geodesic is defined to be a solution to the ODE, {π, s} =
−2c2

n−1 g jk
dx j

ds
dxk

ds . Since M has constant curvature −1/4, this ODE reads {π, s} = −2c2

n−1 and its general solution is given by 

π(s) = αe2ks+1
βe2ks+δ

, where, k = c/
√

n − 1 and αδ −β 
= 0. Here by our assumption c = 1/2. We note that L(γ ) = dF (O , P ) = ln 5, 
γ (0) = O and γ (ln 5) = P . Considering projective parameter, we have γ (π(0)) = O and γ (π(ln 5)) = P . Next, we show 
that dM(O , P ) ≥ ln(5 + ε) > dF (O , P ), for some ε > 0. Without loss of generality, we assume αδ − β > 0. In this case, π is 
strictly increasing. We show that there is no projective parameter that satisfies the following statements. i) π(− ln 2) ≤ −1, 
ii) lims→+∞ π(s) ≥ 1, iii) ρ(π(0), π(ln 5)) = ln(5 + ε), ∀ε < 16/5. The first two statements are necessary to guarantee that 
π is defined on (−1, 1). We proceed by contradiction. Let 0 < ε < 16/5 and assume that we have a projective parameter, 
π(s) = αes+1

βes+δ
, which satisfies the statements i)–iii). We have −1 < π(0) < 1 and −1 < π(ln 5) < 1 which read:

β + δ + α + 1

β + δ
> 0,

β + δ − α − 1

β + δ
> 0, (8)

5β + δ + 5α + 1

5β + δ
> 0,

5β + δ − 5α − 1

5β + δ
> 0. (9)

Also i) and ii) read

α + 2

β + 2δ
≤ −1,

α

β
≥ 1. (10)

The case lims→+∞ π(s) = +∞ happens when β = 0 and it is considered in (10). Since α
β

≥ 1, we should study two cases 
α ≥ β > 0 and α ≤ β < 0. First, we assume that α ≥ β > 0. Since αδ > β , δ should be positive. Therefore α+2

β+2δ
> 0 which 

contradicts (10). We consider α ≤ β < 0 henceforth. Now let study δ in the following four cases.
Case 1) Assume that δ ≤ −1. From (10), we have α + 2 ≥ −(β + 2δ) and α + β ≥ −2(1 + δ). The right hand side of the 

inequality is positive and it is a contradiction.
Case 2) Assume that δ ≥ 1. We have αδ ≤ β which is a contradiction.
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Case 3) Assume that −1 < δ ≤ 0. iii) reads ρ(π(0), π(ln 5)) = | ln (1−π(0))(1+π(ln 5))
(1+π(0))(1−π(ln 5))

| = ln (1−π(0))(1+π(ln 5))
(1+π(0))(1−π(ln 5))

= ln(5 +ε). The 
second equality holds because π is strictly increasing. We have ( β−α+δ+1

β+δ+α+1 )(
5β+δ+5α+1
5β+δ−5α−1 ) = 5 + ε . Therefore, (20 + 5ε)(β2 −

α2) + (24 + 5ε)(β − α)(δ + 1) + ε(β + α)(δ − 1) + (4 + ε)(δ2 − 1) = 0. Rewriting it, we have

(β − α)
[
(20 + 5ε)(β + α) + (24 + 5ε)(δ + 1)

] = (1 − δ)
[
4(1 + δ) + ε(β + α + δ + 1)

]
. (11)

According to (10), β + δ + α + 1 > −(1 + δ) and 4(1 + δ) + ε(α + β + δ + 1) > (4 − ε)(1 + δ). Therefore, 4(1 + δ) + ε(α +
β + δ + 1) > 0. Moreover, according to (11), (20 + 5ε)(β + α) + (24 + 5ε)(δ + 1) > 0. From (8), we have β + α < −1 − δ and 
0 < (20 + 5ε)(β +α) + (24 + 5ε)(δ + 1) < (20 + 5ε)(−δ −1) + (24 + 5ε)(δ + 1) = 4(1 + δ). Eq. (11) and the last equation read 
β − α >

(1−δ)[4(1+δ)+ε(α+β+δ+1)]
4(1+δ)

= (1 − δ)[1 + ε
4 (1 + β+α

1+δ
)]. According to (8) and (10), we have −2 − 2δ ≤ α + β ≤ −1 − δ. 

Therefore −2 ≤ α+β
1+δ

< −1 and 1 − ε
4 ≤ 1 + ε

4 (1 + β+α
1+δ

) < 1. ε < 16
5 . Thus we have ε(1 + β+α

1+δ
) ≥ −ε > −16

5 , 1 + ε
4 (1 + β+α

1+δ
) >

1
5 and β − δ > 1

5 (1 − δ). The latter inequality contradicts (9).
Case 4) Assume that 0 < δ < 1. Here we study two cases β + δ > 0 and β + δ < 0. Assume that β + δ > 0. According 

to (8) β + α > −1 − δ. Adding the term 2 + 2δ to both side, we have α + 2 + β + 2δ > δ + 1 > 0. Since β + 2δ > 0, it 
contradicts (10). Now assume that β + δ < 0. Therefore 5β + δ < 0. If β + 2δ < 0, we just discussed the case. Finally, assume 
that β + 2δ > 0. Since αδ > β , we have αδ + 2δ > β + 2δ > 0. Here we have δ(α + 2) > 0 and this contradicts (10). Now, 
from 1)–4) we have ρ(π(0), π(ln 5)) ≥ ln(5 + ε). By definition we have dM(O , P ) ≥ ln(5 + ε) > dF (O , P ).

Two Finsler structures F and F̄ are said to be homothetic if there is a constant λ such that F = λ F̄ . Let (M, F ) be a 
Finsler manifold, where F is positively (but perhaps not absolutely) homogeneous of degree one. Let σ(t), 0 ≤ t < ε be any 
short enough C1 curve that emanates from p with initial velocity v := vi ∂

∂xi .
One can show that σ(t) = expp(yt), where yt is a curve in T p M that emanates from the origin with initial velocity v . 

Roughly speaking, the local coordinates xi on M induce global coordinates yi on T p M . Therefore, we should have asserted 
that the initial velocity of yt is vi ∂

∂xi . However, this is a forgivable confusion on linear spaces, of which T p M is one. We have 
dF (p, σ(t)) = F (p, yt) and v = limt→0+ 1

t yt . Using the continuity of F help us to deduce that F (p, v) = limt→0+ dF (p,σ (t))
t . 

In fact, this is a result due to the Busemann–Mayer theorem for positively homogeneous functions [3,6].
Now, let (M, F ) and (M, F̄ ) be two projectively related complete Finsler spaces with constant negative Ricci scalars. Due 

to Theorem 3.3, 2c√
n−1

dF (x, y) = dM(x, y) = 2c̄√
n−1

dF̄ (x, y). Therefore, dF (x, y) = λdF̄ (x, y) for some λ. Considering the latter 
assertion we just made and Theorem 3.3, the following corollary is easily obtained.

Corollary 3.4. Let (M, F ) and (M, F̄ ) be two complete Einstein–Finsler spaces with Rici j = −c2 gij and R̄ici j = −c̄2 ḡi j , respectively, if 
F and F̄ are projectively related, then they are homothetic.

Moreover, if the flag curvature λ is constant then by means of Eq. (2), we have the following corollary.

Corollary 3.5. Let (M, F ) and (M, F̄ ) be two complete Finsler spaces of constant negative flag curvature, if F and F̄ are projectively 
related, then they are homothetic.
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