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RESUME

Un énoncé de Handel-Mosher certifie que le rapport des logarithmes des facteurs
d'étirement d’'un automorphisme iréductible du groupe libre Fy et de son inverse est borné
par une constante Cy. Nous montrons dans la présente courte note que cette constante Cy
ne peut pas étre choisie indépendante de N.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let Fy be the free group of rank N > 2. An outer automorphism ¢ € Out(Fy) is said to be fully irreducible if no power of
@ preserves the conjugacy class of any proper free factor of Fy. In this case ¢ has a well defined stretch factor A(¢), which,
for any non-¢-periodic conjugacy class « in Fy and a free basis X of Fy, is given by

— NI n n
Me) = lim J @]
where | - ||x denotes cyclically reduced word length with respect to X. As was observed in [2] (see also [7]), there exist

fully irreducible elements ¢ € Out(Fy) with the property that ¢ and ¢! have different stretch factors:
@) # 1@

However, the following result from [6] describes the extent to which they can differ. To state their result precisely, let N > 2
be an integer and set

log(A())
Cy=sup —
¢ log(h(p~1))
where ¢ ranges over all fully irreducible elements of Out(Fy).
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Theorem 1. (Handel-Mosher [6].) For every integer N > 2, we have Cy < oo.

An alternate proof of this result was more recently given by Algom-Kfir and Bestvina [1]. While the proofs of this theorem
appeal to the fact that N is fixed, it is not clear that this dependence is necessary. In this note, we prove that in fact it is.

Theorem 2. With {Cn}n>2 defined as above, lim supy_, o, Cn = oo.

Proof. The proof will appeal to a construction and analysis carried out in [4] and [5]. To that end, let F3 = {(a,b, c) and
consider the element ¢ € Aut(F3) defined by

p@=b, @by =b"'a"'bac, @) =a.
It was shown in [4, Example 2.19] that ¢ is fully irreducible. Next, let
G=F3xyZ=(ab,cr]| rixr=¢) forallge F3)

be the free-by-cyclic group determined by ¢, and let ug: G — Z in Hom(G; R) = H'(G; R) be the associated homomorphism
obtained by sending r to 1 and all other generators to O.

In [4], we construct a cone A C H'(G;R) containing ug with the property that every other primitive integral element
u € A has kernel ker(u) a finitely generated free group.

The action of u(G) = Z on ker(u) is generated by a monodromy automorphism ¢, € Aut(ker(u)) determining an expression
of G as a semidirect product G = ker(u) x¢, Z with associated homomorphism u. One of the main results of [4] is that all
such ¢, are fully irreducible.

In [5], we construct a strictly larger open, convex cone .A C 8 C H'(G;R) and a function $3:8 — R that is convex, real
analytic, and homogeneous of degree —1 (i.e., H(tu) = %ﬁ(u)) such that

log(A(¢u)) = H(w)

for any primitive integral class u € A. In fact, this holds for all primitive integral u € 8 with the appropriate interpretation
of A(¢y). We also show that § is the cone on the component of the BNS-invariant X' (G) [3] containing ug [5, Theorem I]
and that A lies over the symmetrized BNS-invariant (that is, both A and —A project into X (G)) [5, Corollary 13.7]. In fact,
a key result of Bieri-Neumann-Strebel is that an integral class u € Hom(G; Z) has ker(u) finitely generated if and only if
both u and —u lie in the X (G) [3].

The homomorphism —ug has ker(—ug) = ker(ug) = Fy and associated monodromy ¢!, thus expressing G as Fy X -1 Z.
Since ¢! is also fully irreducible, the main result of [5] provides another open, convex cone §_ C H'(G; R) containing —ug
and a corresponding convex, real analytic, homogeneous of degree —1 function $_:8_ — R. Since —.A projects into X(G)
and 8_ is the cone on the component of X(G) containing —ug, we see that —A C 8_. Thus $_ calculates the inverse
stretch factors

H-(—u) =log(r(pz "))

for all primitive integral u € A.

Example 8.3 of [5] exhibits a primitive integral class u; € 8 which lies on the boundary of A (see [5, Fig. 8]) for which
ker(uq) is not finitely generated. It follows that —uq is not in the BNS-invariant. The key observation is that —uq then
necessarily lies on the boundary of $_ (since —u; € —A C 8_ but —u; ¢ S_).

Let {un}p2, C A be primitive integral classes protectively converging to uj. That is, there exists {tn}5°, C R so that
limy— o0 taln = u4. Since this convergence occurs inside 8, it follows that

lim $H(thun) = H(u1) < oo.
n—-oo
On the other hand, since lim,_, oo —thuy = —uq € 38_, it follows from [5, Theorem F] that
lim H_(—tyuy) = 0.
n—oo
Therefore, appealing to the homogeneity of $) and $)_, we have:

lOg()h((Pu_n])) . H_(—up) . $H_(—tnun)
im = lim = lim =
=00 IOg()L(QOun)) n—oo  §)(up) n—oo  $H(tyun)
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