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We consider the mixing behavior of the solutions to the continuity equation associated 
with a divergence-free velocity field. In this Note, we sketch two explicit examples of 
exponential decay of the mixing scale of the solution, in case of Sobolev velocity fields, 
thus showing the optimality of known lower bounds. We also describe how to use such 
examples to construct solutions to the continuity equation with Sobolev but non-Lipschitz 
velocity field exhibiting instantaneous loss of any fractional Sobolev regularity.
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r é s u m é

Nous étudions le comportement de mélange de solutions de l’équation de continuité 
associée à un champ de vitesse à divergence nulle. Dans cette note, nous décrivons 
deux exemples explicites de décroissance exponentielle de l’échelle de mélange de la 
solution. Dans le cas des champs de vitesse Sobolev, nous montrons donc l’optimalité des 
estimations par dessous connues. Nous décrivons aussi comment utiliser de tels exemples 
pour construire des solutions de l’équation de continuité à champs de vitesse Sobolev 
mais non lipschitziens : ces solutions perdent immédiatement toute régularité Sobolev 
fractionnaire.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider a passive scalar ρ , which is advected by a time-dependent, divergence-free velocity field u on the two-
dimensional torus, i.e., a solution ρ to the continuity equation with velocity field u:{

∂tρ + div(uρ) = 0,

ρ(0, ·) = ρ̄,
on R

+ ×T
2. (1)
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We assume that the initial datum ρ̄ satisfies 
∫
T2 ρ̄ = 0 (this condition is, at least formally, preserved under the time evolu-

tion) and we are interested in the mixing behavior of ρ(t, ·) as t tends to +∞.
In order to quantify the level of “mixedness”, two different notions of mixing scale are available in the literature. The 

first one is based on homogeneous negative Sobolev norms (see, for instance, [10,12]), the most common one being the 
Ḣ−1 norm, which should be viewed as a characteristic length of the mixing in the system (here and in the following, we 
use the dot as in Ḣ−1 to denote the homogeneous Sobolev norm):

Definition 1. The functional mixing scale of ρ(t, ·) is ‖ρ(t, ·)‖Ḣ−1(T2) .

The second notion (see [5]) is geometric and has been introduced for solutions with value ±1:

Definition 2. Given 0 < κ < 1/2, the geometric mixing scale of ρ(t, ·) is the infimum ε(t) of all ε > 0 such that for every 
x ∈ T

2, there holds

κ ≤ L2({ρ(t, ·) = 1} ∩ Bε(x))

L2(Bε(x))
≤ 1 − κ, (2)

where L2 denotes the two-dimensional Lebesgue measure and Bε(x) is the ball of radius ε centered at x.

The parameter κ is fixed and plays a minor role in the definition. Informally, in order for ρ(t, ·) to have geometric 
mixing scale ε(t), we require that every ball of radius ε(t) contains a substantial portion of both level sets {ρ(t, ·) = 1} and 
{ρ(t, ·) = −1}.

Although, strictly speaking, the two notions above are not equivalent (see the discussion in [11]), they are heuristically 
very related, and indeed most of the results in this area are available considering any of the two definitions.

The mixing process is studied in the literature under energetic constraints on the velocity field, that is, assuming that the 
velocity field is bounded with respect to some spatial norm, uniformly in time. We now briefly review some of the related 
literature (most of the results hold indeed in any space dimension).

(a) The velocity field u is bounded in Ẇ s,p(T2) uniformly in time for some s < 1 and 1 ≤ p ≤ ∞ (the case s = 0, p = 2, 
often referred to as energy-constrained flow, is of particular interest in applications). In this case, the Cauchy problem 
for the continuity equation (1) is not uniquely solvable in general (see [1,2]). It is therefore possible to find a velocity 
field and a bounded solution that is non-zero at the initial time, but is identically zero at some later time. This fact 
means that it is possible to have perfect mixing in finite time, as already observed in [10] and established in [11] for 
s = 0, building on an example from [7,5].

(b) The velocity field u is bounded in Ẇ 1,p(T2) uniformly in time for some 1 ≤ p ≤ ∞ (the case p = 2, often referred to 
as enstrophy-constrained flow, is of particular interest in applications). In this case, the results in [8] ensure uniqueness 
for the Cauchy problem (1), while for p > 1 the quantitative Lipschitz estimates for regular Lagrangian flows in [6]
provide an exponential lower bound on the geometric mixing scale, ε(t) ≥ C exp(−ct). The extension to the borderline 
case p = 1 is still open (see, however, [4]). For the same class of velocity fields, an exponential lower bound for the 
functional mixing scale, ‖ρ(t, ·)‖Ḣ−1 ≥ C exp(−ct), has been proved in [9,13].

(c) For velocity fields bounded in ḂV(T2) uniformly in time, the results in [3] ensure uniqueness for the Cauchy problem (1). 
It was recognized in [5] that an exponential decay of the geometric mixing scale can indeed be attained for velocity 
fields bounded in ḂV(T2) uniformly in time, and actually the same example works also for the functional mixing scale.

(d) The velocity field u is bounded in Ẇ s,p(T2) uniformly in time for some s > 1 (here the case of interest in applications 
is that of palenstrophy-constrained flows, that is, s = 2 and p = 2). In this case, there are no better lower bounds for the 
decay of the (functional or geometric) mixing scale than the exponential one obtained for s = 1. The common belief, 
supported also by the numerical simulations in [11,9], is that this bound is optimal.

In this note, we sketch two examples in which both the functional and the geometric mixing scales decay exponentially 
with a velocity field bounded in Ẇ 1,p(T2) uniformly in time (for every 1 ≤ p < ∞ in the first example, and for every 
1 ≤ p ≤ ∞ in the second example, thus including the Lipschitz case). These results show the sharpness of the lower bounds 
in [6,13,9] (point (b) above), for the full range 1 ≤ p ≤ ∞. Our examples can be seen as a Sobolev (or even Lipschitz) variant 
of the example in point (c).

Moreover, we describe how such constructions can be employed to obtain counterexamples to the propagation of any 
fractional Sobolev regularity for solutions to the continuity equation (1) in Rd , when the velocity field belongs to Sobolev 
classes that do not embed in the Lipschitz space.

After the completion of the present work, we were made aware of a related result obtained independently by Yao and 
Zlatoš [14], which provides examples of mixing of general initial data, with a rate that is optimal in the range 1 ≤ p ≤ p̄ for 
some p̄ > 2.
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2. Scaling analysis in a self-similar construction

A conceivable procedure to mix an initial datum is through a self-similar evolution. We fix s ≥ 0 and 1 ≤ p ≤ ∞ and 
assume the following.

Assumption 3. There exist a velocity field u0 and a solution ρ0 to (1), both defined for 0 ≤ t ≤ 1, such that:

(i) u0 is bounded in Ẇ s,p(T2) uniformly in time;
(ii) ρ0 is bounded;

(iii) there exists a constant λ > 0, with 1/λ an integer, such that

ρ0(1, x) = ρ0

(
0,

x

λ

)
.

We will give an explicit example of a u0 and a ρ0 satisfying this assumption (with s = 1 and 1 ≤ p < ∞) in Section 3. 
Given a positive parameter τ to be determined later, we set for each integer n = 1, 2, . . . and for t ∈ [0, τn]:

un(t, x) = λn

τn
u0

(
t

τn
,

x

λn

)
, ρn(t, x) = ρ0

(
t

τn
,

x

λn

)
.

It is easy to check that ρn solves (1) with velocity field un and that, because of Assumption 3(iii),

ρn
(
τn, x

) = ρn+1(0, x). (3)

Now we construct u and ρ by patching together the velocity fields u0, u1, . . . and the corresponding solutions ρ0, ρ1 . . .

In other words, we define

u(t, x) = un(t − Tn, x), ρ(t, x) = ρn(t − Tn, x) for Tn ≤ t < Tn+1, and n = 1,2, . . . ,

where

Tn =
n−1∑
i=0

τ i, for n = 1,2, . . . ,∞.

Observe that u and ρ are defined for 0 ≤ t < T∞ , and that, thanks to Eq. (3), ρ is a solution to the Cauchy problem (1) with 
velocity field u and initial condition ρ̄(x) = ρ0(0, x). (See Fig. 1.)

Since

∥∥un(t, ·)
∥∥

Ẇ s,p(T2)
=

(
λ1−s

τ

)n∥∥∥∥u

(
t

τn
, ·

)∥∥∥∥
Ẇ s,p(T2)

,

by setting τ = λ1−s , we obtain that u is bounded in Ẇ s,p(T2) uniformly in time. Moreover,

∥∥ρn(t, ·)
∥∥

Ḣ−1(T2)
= λn

∥∥∥∥ρ0

(
t

τn
, ·

)∥∥∥∥
Ḣ−1(T2)

≤ Mλn with M = sup
0≤t≤1

∥∥ρ0(t, ·)
∥∥

Ḣ−1(T2)
,

that is,∥∥ρ(t, ·)∥∥Ḣ−1(T2)
≤ Mλn, for Tn ≤ t < Tn+1. (4)

There are now three cases:

(1) s < 1, then τ = λ1−s < 1. In this case, T∞ is finite and ‖ρ(t, ·)‖Ḣ−1 → 0 as t → T∞ , that is, we have perfect mixing in 
finite time;

(2) s = 1, then τ = 1. In this case, T∞ = ∞ and Tn = n; therefore the inequality t < Tn+1 in (4) becomes t − 1 < n, and the 
estimate in (4) yields the following exponential decay of the functional mixing scale:∥∥ρ(t, ·)∥∥Ḣ−1(T2)

≤ Mλt−1;

Fig. 1. Example of self-similar evolution for a function ρ taking only two values.
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(3) s > 1, then τ > 1. In this case, T∞ = ∞ and

Tn = τn − 1

τ − 1
= λ(1−s)n − 1

λ1−s − 1
.

Hence, reasoning as above, (4) yields the following polynomial decay:

∥∥ρ(t, ·)∥∥Ḣ−1(T2)
≤ M

[1 + t(λ1−s − 1)]− 1
s−1

λ
	 C(M, λ, s)t− 1

s−1 .

To summarize, we have proved the following:

Theorem 4. Given s and p, under Assumption 3, there exist a velocity field u and a solution ρ to the Cauchy problem (1), such that u
is bounded in Ẇ s,p(T2) uniformly in time and the functional mixing scale of ρ exhibits the following behavior depending on s:

case s < 1: perfect mixing in finite time;
case s = 1: exponential decay;
case s > 1: polynomial decay.

Remark 5. In the above construction, we can take ρ0 with values ±1; in this case, using that for Tn ≤ t < Tn−1 the solution 
ρ(t, ·) is periodic on T2 with period λn , we can easily prove that the geometric mixing scale ε(t) exhibits the same behavior 
of the functional mixing scale detailed in Theorem 4. Note that for s > 1, our self-similar examples do not match the known 
exponential lower bound for the (geometric and functional) mixing scale, which is supposed to be optimal.

3. Two constructions

It is possible to construct an example of a velocity field u0 and a solution ρ0 satisfying Assumption 3 by considering a 
shear flow that splits a ball into two pieces, afterward rearranged into two smaller balls. This is essentially the nature of the 
example in [5]. Note that such a shear flow is discontinuous along a line and indeed it is of class BV but not of class W 1,1.

In order to obtain a Sobolev velocity field, one could consider a “modulated” shear flow of the type u(t, x1, x2) =
(0, v(t, x1)), for which the “total advection” x1 
→ ∫ 1

0 v(t, x1) dt is a characteristic function. However, such a construction 
cannot be achieved (even) with v ∈ L1

t (Ḣ1
x1

). And indeed the examples with Sobolev regularity we present will be genuinely 
two-dimensional.

The first example shows that Assumption 3 can be fulfilled for s = 1 and 1 ≤ p < ∞. We will actually only describe the 
time evolution of a set in T2 for 0 ≤ t ≤ 1; then ρ0 will be the function taking the value +1 on the set and −1 on the 
complement, and u0 will be a velocity field that realizes such an evolution. Given the evolution of the set, the velocity field 
u0 is provided by the following lemma, except at the time(s) when a singularity occurs in the geometric evolution:

Lemma 6. Given a smooth set evolving smoothly in time, such that the area of each connected component is constant in time, there 
exists a smooth, divergence-free velocity field, the flow of which deforms the set according to the given evolution.

Example 7. We consider the geometric evolution described in Fig. 2; the velocity field u0 realizing this evolution can be 
taken bounded in Ẇ 1,p(T2), for any given 1 ≤ p < ∞, uniformly in time. The evolution is smooth except at the times 
at which a connected component of the set is split in two. This splitting is realized by first creating a small tube-like 
region in the connected component, which is then pinched, thus separating the component into two parts. One way to 
achieve the pinching with the correct regularity for the velocity field is to impose a horizontal compression with a square 
root-like velocity along the horizontal diameter of the ball, which is therefore shrunk to a single point in finite time. In 
order to obtain a (globally) divergence-free velocity field, this horizontal compression has to be compensated by a vertical 
decompression. The details of the construction are actually quite involved, therefore we leave them for a forthcoming paper.

Remark 8. Although the results in [8,3] guarantee the uniqueness of a suitable “flow solution” for Sobolev velocity fields 
and for velocity fields with bounded variation, we see in Example 7 that the set of initial data lacking pointwise uniqueness 
may contain a full line, and that the flow does not preserve topological properties of sets such as connectedness.

Fig. 2. First construction: splitting a connected component in two.
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Fig. 3. Second construction: the Peano snake.

Since the evolution in Example 7 does not preserve connectedness, clearly it cannot be implemented with a Lipschitz 
velocity field. Our second example has Lipschitz regularity, and, strictly speaking, it is not self-similar; rather, it consists of 
two basic elements, which (up to rotations) are replicated at each step at finer scales. What we do is reminiscent of the 
construction of the classical Peano curve filling the square (again, we leave the details for a forthcoming paper).

Example 9. The basic moves of the construction are illustrated in Fig. 3. We start from a straight strip at time t = 0. Using 
Lemma 6, the strip is rearranged into the meandering strip at t = 1, which consists of “straight” and “curved” pieces. In 
the time interval from t = 1 to t = 2, the set evolves as follows: the “straight pieces” are evolved employing the same 
transformation (possibly together with a rotation) used from t = 0 to t = 1, while the “curved pieces” are rearranged as 
shown in Fig. 3 for the right upper corner at t = 1, again using Lemma 6. Notice that at every step our picture contains only 
“straight pieces” and “curved pieces”, therefore the entire evolution is determined by the two basic moves in Fig. 3.

Remark 10. Although lacking exact self-similarity, the fact that only two basic elements are repeated allows us to follow 
the analysis in Section 2 and to prove that both the functional and geometric mixing scales decay exponentially in time.

4. Loss of regularity for solutions to the continuity equation

We finally describe how to employ the above constructions to obtain counterexamples to the propagation of any frac-
tional Sobolev regularity for solutions to the continuity equation (1) in Rd .

First of all, we observe that the construction in Example 9 can be modified to obtain a divergence-free velocity field 
u ∈ C∞(R+ ×R

d) and a solution ρ ∈ C∞(R+ ×R
d) to problem (1), so that

(i) both u and ρ are supported in the unit cube Q (in space);
(ii) u is bounded in W 1,∞(Q ) uniformly in time;

(iii) ‖ρ(t, ·)‖Ḣ−s(Q ) � exp(−cst) for all s > 0 and some positive constant c.

Since the L2 norm of ρ is conserved in time, the interpolation inequality

∥∥ρ(t, ·)∥∥L2(Q )
≤ ∥∥ρ(t, ·)∥∥1/2

Ḣ s(Q )

∥∥ρ(t, ·)∥∥1/2
Ḣ−s(Q )

gives

∥∥ρ(t, ·)∥∥Ḣ s(Q )
� exp(cst) for all s > 0. (5)

This example “saturates” the Gronwall estimate ‖ρ(t, ·)‖Ḣ s(Q ) � exp(cst).

Then, given a disjoint family Q n of cubes in Rd with side λn , we can consider in each Q n (suitable translations of) the 
rescaled velocity fields and the solutions

vn(t, x) = λn

τn
u

(
t

τn
,

x

λn

)
, θn(t, x) = Cnρ

(
t

τn
,

x

λn

)
,

and define v = ∑
n vn and θ = ∑

n θn . It is immediate to check that such θ solves the continuity equation (1) with velocity 
field v . Moreover, thanks to the exponential growth in (5), we can choose the construction parameters λn, τn, Cn so as to 
impose a certain regularity of the velocity field v and of the initial datum θ(0, ·) = θ̄ on the one hand, and ensure an 
instantaneous loss of any Sobolev regularity for the solution θ(t, ·) on the other hand. More precisely:

Theorem 11. We can choose the construction parameters so that:

(i) the velocity field v is bounded in Ẇ 1,p(Rd) uniformly in time, for any given p < ∞;
(ii) the initial datum θ̄ belongs to C∞

c (Rd);
(iii) the solution θ(t, ·) does not belong to Ḣ s(Rd) for any s > 0 and t > 0.

Moreover both v and θ are compactly supported in space, and can be taken smooth on the complement of a point in Rd.
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Also in the case of velocity fields bounded in Ẇ r,p(Rd) uniformly in time, our construction gives some loss of regularity of 
the initial datum, provided that Ẇ r,p(Rd) does not embed in Ẇ 1,∞(Rd).
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