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Presented by the Editorial Board

We continue the development, started in [8], of the asymptotic description of certain 
stochastic neural networks. We use the Large Deviation Principle (LDP) and the good rate 
function H announced there to prove that H has a unique minimum μe , a stationary 
measure on the set of trajectories T Z. We characterize this measure by its two marginals, 
at time 0, and from time 1 to T . The second marginal is a stationary Gaussian measure. 
With an eye on applications, we show that its mean and covariance operator can be 
inductively computed. Finally, we use the LDP to establish various convergence results, 
averaged, and quenched.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous prolongeons le développement, commencé en [8], de la description asymptotique 
de certains réseaux de neurones stochastiques. Nous utilisons le principe de grandes 
déviations (PGD) et la bonne fonction de taux H que nous y annoncions pour démontrer 
l’existence d’un unique minimimum, μe , de H , une mesure stationnaire sur l’ensemble T Z

des trajectoires. Nous caractérisons cette mesure par ses deux maginales, à l’instant 0, et 
du temps 1 au temps T . La seconde marginale est une mesure gaussienne stationnaire. 
Avec un oeil sur les applications, nous montrons comment calculer de manière inductive 
sa moyenne et son opérateur de covariance. Nous montrons aussi comment utiliser le PGD 
pour établir des résultats de convergence en moyenne et presque sûrement.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Après avoir rappelé dans la section 2 les notations et le modèle de réseaux de neurones utilisés dans [8], nous montrons 
dans la proposition 3.1 et le théorème 3.2 que la bonne fonction de taux H du PGD annoncé dans cette publication admet 
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un minimum unique. Le théorème 3.2 fournit une méthode constructive de calcul effectif de la loi de ce minimum. Nous 
montrons enfin, dans la section 4, l’intérêt de ce minimum, qui apparaît comme la limite faible quand n → ∞ (le nombre 
de neurones tend vers l’infini) de la loi Q Vn du réseau moyennée par rapport aux poids synaptiques ; c’est un résultat en 
moyenne. Nous montrons aussi dans le corollaire 4.3 un résultat de convergence faible presque sûrement par rapport aux 
poids synaptiques, résultat intéressant d’un point de vue pratique, puisqu’il évite de prendre la moyenne par rapport à tous 
les réseaux. Le théorème 4.4 donne un résultat de convergence presque sûre de la mesure empirique vers le minimum de H .

1. Introduction

In [8] we started our asymptotic analysis of very large networks of neurons with correlated synaptic weights. We showed 
that the image Πn of the averaged law Q Vn through the empirical measure satisfied a large deviation principle with good 
rate function H . In the same article, we provided an analytical expression of this rate, which is a function of the spectral 
representation of certain Gaussian processes. In the next section, we recall some definitions given in [8].

2. Mathematical framework

We start by recalling the model of [8]. For some positive integer n > 0, we let Vn = { j ∈ Z : | j| ≤ n}, and |Vn| = 2n + 1. 
The finite-size neural network below is indexed by points in Vn . We work in discrete time, over times t ∈ {0, 1, . . . , T }, for 
some positive integer T . The state variable for each neuron is in R, and the path space is T = R

T +1. We equip T with 
the Euclidean topology, T Z with the cylindrical topology, and denote the Borelian σ -algebra generated by this topology 
by B(T Z).

The equation describing the time variation of the membrane potential U j of the jth neuron writes:

U j
t = γ U j

t−1 +
∑
i∈Vn

Jn
ji f

(
U i

t−1

) + θ j + B j
t−1, U j

0 = u j
0, j ∈ Vn, t = 1, . . . , T (1)

f : R → ]0, 1[ is a monotonically increasing Lipschitz continuous bijection. γ is in [0, 1) and determines the time scale of 
the intrinsic dynamics of the neurons. The B j

t s are i.i.d. Gaussian random variables distributed as N1(0, σ 2).1 They represent 
the fluctuations of the neurons’ membrane potentials. The θ j s are i.i.d. as N1(θ̄ , θ2). They are independent of the Bi

t s and 
represent the current injected in the neurons. The u j

0s are i.i.d. random variables each governed by the law μI .
The Jn

i js are the synaptic weights. Jn
i j represents the strength with which the ‘presynaptic’ neuron j influences the 

‘postsynaptic’ neuron i. They arise from a stationary Gaussian random field specified by its mean and covariance function

E
[

Jn
i j

] = J̄

|Vn| , cov
(

Jn
i j Jn

kl

) = 1

|Vn|Λ
(
(k − i) mod Vn, (l − j) mod Vn

)
.

Λ is positive definite, let Λ̃ be the corresponding (positive) Fourier transform. We make the technical assumption that 
the summation over both indices of the series (Λ(i, j))i, j∈Z is absolutely convergent to Λsum > 0. We write Λsum

min =
infn>0

∑
j,k∈Vn

Λ( j, k) and assume that Λsum
min > 0.

We note Jn the |Vn| × |Vn| matrix of the synaptic weights, Jn = ( Jn
i j)i, j∈Vn .

The process (Y j) defined by

Y j
t = γ Y j

t−1 + θ̄ + B j
t−1, j ∈ Vn, t = 1, . . . , T , Y j

0 = u j
0

is stationary and independent. Writing v = Ψ (u), we define:{
v0 = Ψ0(u) = u0
vs = Ψs(u) = us − γ us−1 − θ̄ , s = 1, · · · , T .

(2)

We extend Ψ to a mapping T Z → T Z componentwise. We now introduce some more notation.
For some topological space Ω equipped with its Borelian σ -algebra B(Ω), we denote the set of all probability measures 

by M(Ω). We equip M(Ω) with the topology of weak convergence. For some μ ∈ M(T Z) governing a process (X j) j∈Z , 
we let μVn ∈ M(T Vn ) denote the marginal governing (X j) j∈Vn . For some μ ∈ M(T Z) governing a process (X j) j∈Z , we 
let μVn ∈ M(T Vn ) denote the marginal governing (X j) j∈Vn . For some X ∈ T and 0 ≤ a ≤ b ≤ T , Xa,b denotes the b − a +
1-dimensional subvector of X . We let μa,b ∈ M(T Z

a,b) denote the marginal governing (X j
a,b) j∈Z . For some j ∈ Z, let the 

shift operator S j : T Z → T Z be S(ω)k = ω j+k . We let MS (T Z) be the set of all stationary probability measures μ on 
(T Z, B(T Z)) such that for all j ∈ Z, μ ◦ (S j)−1 = μ.

We next introduce the following definitions.

1 We note Np(m, Σ) the law of the p-dimensional Gaussian variable with mean m and covariance matrix Σ .
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Definition 2.1. For each measure μ ∈M(T Vn ) or MS (T Z), we define μ to be μ ◦ Ψ −1.

Definition 2.2. Let E2 be the subset of MS (T Z) defined by

E2 = {
μ ∈ MS

(
T Z

) ∣∣ Eμ
1,T

[∥∥v0
∥∥2]

< ∞}
.

Let pn : T Vn → T Z be such that pn(ω)k = ωk mod Vn . Here, and throughout the paper, we take k mod Vn to be the 
element l ∈ Vn such that l = k mod |Vn|. Define the process-level empirical measure μ̂n : T Vn →MS (T Z) as

μ̂n(ω) = 1

|Vn|
∑
k∈Vn

δSk pn(ω). (3)

We note Q Vn ( Jn) the element of M(T Vn ) which is the law of the solution to (1) conditioned on Jn . We let Q Vn =
E

J [Q Vn ( Jn)] be the law averaged with respect to the weights. Finally we introduce the image law in terms of which the 
principal results of this paper are formulated.

Definition 2.3. Let Πn ∈M(MS (T Z)) be the image law of Q Vn through the function μ̂n : T Vn →MS (T Z) defined by (3):

Πn = Q Vn ◦ μ̂−1
n

3. Characterization of the unique minimum of the rate function

In [7], with each measure ν ∈M(T Z) we associate the measure, noted Q ν of M(T Z) such that Q ν = μZ

I ⊗ Q ν
1,T

, where 
Q ν

1,T
is a Gaussian measure on T Z

1,T with spectral density σ 2δ(θ) + K̃ ν(θ) and mean cν . The spectral density K̃ ν and mean 
cν are defined in [8]. We also define the rate function Hν , which uses a linear approximation of the functional Γ defined 
in [7] and satisfies the relation Hμ(μ) = H(μ). We prove the following lemma in [7].

Lemma 3.1. For μ, ν ∈MS (T Z), Hν(μ) = 0 if and only if μ = Q ν .

As stated in the following proposition, there exists a unique minimum μe of the rate function. We provide explicit 
equations for μe which would facilitate its numerical simulation.

Proposition 3.1. There is a unique distribution μe ∈ MS (T Z) which minimizes H. This distribution satisfies H(μe) = 0, which is 
equivalent to μe = Q μe .

Proof. The proof, which is found in [7], is an easy consequence of the explicit method we outline to actually calculate μe
below in Theorem 3.2. �

We characterize the unique measure μe such that μe = Q μe in terms of its image μe . This characterization allows 
one to directly numerically calculate μe . Since μe is Gaussian, the problem becomes that of defining the latest entries (in 
time) of K μe and cμe in terms of previous ones. Hence we characterize μe recursively (in time), by providing a method of 
determining μe0,t

in terms of μe0,t−1
. Let K μe,l

(t−1,s−1) be the (t − 1) × (s − 1) submatrix of K μe,l composed of the rows from 
times 1 to t − 1 and the columns from times 1 to s − 1. Let the measure μe

V 0
0,t

∈M(T0,t) be given by

μe
V 0
0,t

(dv) = μI (dv0) ⊗Nt
(
cμe

1,t,σ
2 Idt + K μe,0

(t,t)

)
dv1,t,

and μe
(0,l)
(0,t),(0,s)

∈M(T0,t × T0,s) be given by

μe
(0,l)
(0,t),(0,s)

(
dv0

0,tdvl
0,s

) = μI
(
dv0

0

) ⊗ μI
(
dvl

0

)
⊗Nt+s

((
cμe

1,t, cμe
1,s

)
,σ 2 Idt+s + K μe,(0,l)

(t,s)

)
dv0

1,t dvl
1,s,

where

K μe,(0,l)
(t,s) =

⎡
⎣ K μe,0

(t,t) K μe,l
(t,s)

† K μe,l
(t,s) K μe,0

(s,s)

⎤
⎦ ,

and the † sign represents the transpose of a matrix or a vector. Observe that {cμe
s , K μe,l

rs |r, s ∈ [1, t], } are sufficient to char-
acterize μe

(0,l) , since a Gaussian is entirely characterized by its mean and covariance. Furthermore, {μe
(0,l) |l ∈ Z}
(0,t),(0,t) (0,t),(0,t)
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are sufficient to characterize μe0,t
, because a Gaussian law is uniquely characterized by its pairwise marginals. Therefore 

the following theorem is sufficient for the inductive calculation of μe .

Theorem 3.2. We may characterize μe inductively as follows. Initially μe 0
= μZ

I . Given that we have a complete characterization of 
{μe

(0,l)
(0,t−1),(0,t−1)

, μe
V 0
0,t−1

: l ∈ Z}, we may characterize {μe
(0,l)
(0,t),(0,t)

, μe
V 0
0,t

: l ∈ Z} according to the following identities. For s ∈ [1, t],

cμe
s = J̄

∫
Rs

f
(
Ψ −1(v)s−1

)
μe

V 0
0,s−1

(dv). (4)

For 1 ≤ r, s ≤ t, K μe,k
rs = θ2δk1T

†1T + ∑∞
l=−∞ Λ(k, l)Mμ,l

rs . Here, for p = max(r − 1, s − 1),

Mμe,0
rs =

∫

Rp+1

f
(
Ψ −1(v)r−1

) × f
(
Ψ −1(v)s−1

)
μe

V 0
0,p

(dv), (5)

and for l �= 0

Mμe,l
rs =

∫
Rr×Rs

f
(
Ψ −1(v0)

r−1

) × f
(
Ψ −1(vl)

s−1

)
μe

(0,l)
(0,r−1),(0,s−1)

(
dv0 dvl). (6)

Remark 1. From a practical point of view the s-dimensional integral in (4) and the max(r, s)-dimensional integral in (5)
can be reduced by a change of variable to at most two dimensions. Similarly, the r + s-dimensional integral in (6) can be 
reduced to at most four dimensions.

Remark 2. If we make the biologically realistic assumption that the synaptic weights are not correlated beyond a certain 
correlation distance d ≥ 0, Λ(k, l) = 0 if k or l does not belong to Vd it is seen that the matrixes K μe , k are 0 as soon as 
k /∈ Vd: thus in this case the asymptotic description of the network of neurons is sparse.

4. Convergence results

We use the Large Deviation Principle proved in [8,7] to establish convergence results for the measures Πn , Q Vn and 
Q Vn ( Jn).

Theorem 4.1. Πn converges weakly to δμe , i.e., for all Φ ∈ Cb(MS (T Z)),

lim
n→∞

∫

T Vn

Φ
(
μ̂n(u)

)
Q Vn (du) = Φ(μe).

Similarly,

lim
n→∞

∫

T Vn

Φ
(
μ̂n(u)

)
Q Vn

(
Jn)(du) = Φ(μe) J almost surely

Proof. The proof of the first result follows directly from the existence of an LDP for the measure Πn , see Theorem 3.1 in [8], 
and is a straightforward adaptation of the one in [10, Theorem 2.5.1]. The proof of the second result uses the same method, 
making use of Theorem 4.2 below. �

We can in fact obtain the following quenched convergence analogue of the usual lower bound inequality in the definition 
of a Large Deviation Principle.

Theorem 4.2. For each closed set F of MS (T Z) and for almost all J :

lim
n→∞

1

|Vn| log
[

Q Vn
(

Jn)(μ̂n ∈ F )
] ≤ − inf

μ∈F
H(μ).

Proof. The proof is a combination of Tchebyshev’s inequality and of the Borel–Cantelli lemma and is an adaptation of the 
one in [10, Theorem 2.5.4, Corollary 2.5.6]. �

We define Q̌ Vn ( Jn) = 1
|Vn|

∑
j∈Vn

Q Vn ( Jn) ◦ S− j , where we recall the shift operator S . Clearly Q̌ Vn ( Jn) is in MS (T Vn ). 
We define Q̌ Vn to be the expectation of Q̌ Vn ( Jn), with respect to the synaptic weights J .
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Corollary 4.3. Fix m and let n > m. For almost every J and all h ∈ Cb(T Vm ),

lim
n→∞

∫

T Vm

h(u) Q̌ Vn,Vm
(

Jn)(du) =
∫

T Vm

h(u)μVm
e (du),

lim
n→∞

∫

T Vm

h(u) Q Vn,Vm (du) =
∫

T Vm

h(u)μVm
e (du).

That is, the V th
m marginals Q̌ Vn,Vm ( Jn) and Q Vn,Vm of respectively Q̌ Vn ( J N) and Q̌ Vn converge weakly to μVm

e as n → ∞.

Proof. It is sufficient to apply Theorem 4.1 in the case where Φ in Cb(MS (T Z)) is defined by

Φ(μ) =
∫

T Vm

h dμVm

and to use the fact that Q Vn , Q̌ Vn ( J ) ∈MS (T Vn ). �
We now prove the following ergodic-type theorem. We may represent the ambient probability space by W, where ω ∈W

is such that ω = ( J i j, B
j
t , u

j
0), where i, j ∈ Z and 0 ≤ t ≤ T − 1, recall (1). We denote the probability measure governing ω

by P. Let u(n)(ω) ∈ T Vn be defined by (1). As an aside, we may then understand Q Vn ( Jn) to be the conditional law of P
on u(n)(ω), for a given Jn .

Theorem 4.4. Fix m > 0 and let h ∈ Cb(T Vm ). For u(n)(ω) ∈ T Vn (where n > m) P almost surely,

lim
n→∞

1

|Vn|
∑
j∈Vn

h
(
π Vm

(
S ju(n)(ω)

)) =
∫

T Vm

h(u)dμVm
e (u), (7)

where π Vm is the projection onto Vm. Hence μ̂n(u(n)(ω)) converges P-almost-surely to μe .

Proof. Our proof is an adaptation of [10]. We may suppose without loss of generality that 
∫
T Vm h(u)dμVm

e (u) = 0. For p > 1
let

F p =
{
μ ∈ MS

(
T Z

) ∣∣∣
∣∣∣∣
∫

T Vm

h(u)μVm (du)

∣∣∣∣ ≥ 1

p

}
.

Since μe /∈ F p , but it is the unique zero of H , it follows that infF p H = m > 0. Thus by Theorem 3.1 in [8], there exists an n0, 
such that for all n > n0,

Q Vn (μ̂n ∈ F p) ≤ exp
(−m|Vn|

)
.

However

P
(
ω

∣∣ μ̂n
(
u(n)(ω)

) ∈ F p
) = Q Vn

(
u|μ̂n(u) ∈ F p

)
.

Thus

∞∑
n=0

P
(
ω

∣∣ μ̂n
(
u(n)(ω)

) ∈ F p
)
< ∞.

We may thus conclude from the Borel–Cantelli lemma that P almost surely, for every ω ∈ W, there exists np such that for 
all n ≥ np ,

∣∣∣∣ 1

|Vn|
∑
j∈Vn

h
(
π Vm

(
S ju(n)(ω)

))∣∣∣∣ ≤ 1

p
.

This yields (7) because p is arbitrary. The convergence of μ̂n(u(n)(ω)) is a direct consequence of (7), since this means that 
each of the V th

m marginals converge. �
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5. Possible extensions and conclusion

This result can be straightforwardly extended to the case when the noise is correlated but stationary Gaussian, that is 
cov(B j

s , Bk
t ) is some function of s, t and (k − j), see [6]. It can also be easily extended to the case that the initial distribution 

is correlated, but the spatial correlation satisfies a certain “mixing principle”, which enforces a sufficiently rapid decay [4].
The hypothesis that the synaptic weights are Gaussian is somewhat unrealistic from the biological viewpoint. In his PhD 

thesis [10], Moynot has obtained some preliminary results in the case of uncorrelated weights. We think that this is also a 
promising avenue. Moynot again, in his thesis, has extended the uncorrelated weights case, to include two populations with 
different (Gaussian) statistics for each population. This is also an important practical problem in neuroscience. Finally, the 
extension of Moynot’s result to the correlated case would probably constitute a low hanging fruit.

It would be of interest to compare our LDP with other analyses of the rate of convergence of neural networks to their 
limits as the size asymptotes to infinity. This includes the system-size expansion of Bressloff [1], the path-integral formula-
tion of Buice and Cowan [2] and the systematic expansion of the moments by (amongst others) [9,5,3].

In recent years there has been a lot of effort to mathematically justify neural-field models, through some sort of asymp-
totic analysis of finite-size neural networks. Many, if not most, of these models assume/prove some sort of thermodynamic 
limit, whereby if one isolates a particular population of neurons in a localized area of space, they are found to fire increas-
ingly asynchronously as the number in the population asymptotes to infinity.2 Indeed this was the result of Moynot and 
Samuelides. However, our results imply that there are system-wide correlations between the neurons, even in the asymp-

totic limit. The key reason why we do not have propagation of chaos is that the Radon–Nikodym derivative dQ N

dP N of the 
average laws in [8, Proposition 2.4] cannot be tensored into N i.i.d. processes, whereas the simpler assumptions on the 
weight function Λ in Moynot and Samuelides allow the Radon–Nikodym derivative to be tensored. A very important im-
plication of our result is that the mean-field behavior is insufficient to characterize the behavior of a population. Our limit 
process μe is system-wide and ergodic. Our work challenges the assumption held by some that one cannot have a ‘concise’ 
macroscopic description of a neural network without an assumption of asynchronicity at the local population level.
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