
C. R. Acad. Sci. Paris, Ser. I 352 (2014) 935–940
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Probability theory

Probabilities of hitting a convex hull

Probabilités d’atteinte d’une enveloppe convexe

Zhenxia Liu a, Xiangfeng Yang b

a Blåeldsvägen 12B, Sturefors, Sweden
b Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 April 2014
Accepted after revision 26 August 2014
Available online 23 September 2014

Presented by the Editorial Board

In this note, we consider the non-negative least-square method with a random matrix. This 
problem has connections with the probability that the origin is not in the convex hull of 
many random points. As related problems, suitable estimates are obtained as well on the 
probability that a small ball does not hit the convex hull.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous appliquons la méthode des moindres carrés non négatifs d’une 
matrice aléatoire. Ce problème est connecté à la probabilité que l’enveloppe convexe de 
points aléatoires ne contienne pas l’origine. En relation avec ce problème, nous obtenons 
aussi des estimations de la probabilité qu’une petite boule ne rencontre pas une enveloppe 
convexe.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let n and m be two positive integers with n ≤ m. Suppose that A is an n × m matrix and b is a vector in Rn . In 
mathematical optimization and other research fields, it is frequent to consider the non-negative least square solution to a 
linear system AX = b with X = (x1, x2, . . . , xm)T ∈ R

m under the constraint min1≤i≤m xi ≥ 0. The non-negativity constraints 
occur naturally in various models involving non-negative data; see [1,4], and [7]. More generally, for non-negative random 
designs, the matrix A is assumed to be random; see [3] and references therein for this aspect.

The first topic of this note is to investigate the probability P{AX = b, min1≤i≤m xi ≥ 0} when A is a random matrix with 
suitable restrictions; see Theorem 2.1. The idea of the proof is to change this probability to the one involving the event that 
the origin is not in the convex hull of many random points, and then apply a well-known result by Wendel [11]. However, 
instead of applying Wendel’s result directly, we propose a new probabilistic proof of it. This probabilistic proof allows us to 
work on a more general probability of hitting a convex hull by a small ball (instead of the origin) in Rn ; see Theorem 4.1.

The study on random convex hulls dates back to 1960s from various perspectives. For instance, in [10] and [2] the 
expected perimeter of a random convex hull was derived. The expected number of edges of a random convex hull was 
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obtained in [9]. For expected area or volume of a random convex hull, we refer to [5]. As mentioned earlier, in [11] the 
probability that the origin does not belong to a random convex hull was perfectly established. In Section 3, we derive an 
explicit form for the probability that a ball with a small radius δ in R2 does not belong to the convex hull of many i.i.d. 
random points; see Theorem 3.1. This type of probability was considered in [6] together with circle coverage problems. 
Because of addition assumptions there, unfortunately the results (Corollary 4.2 and Example 4.1) in [6] cannot recover our 
result (Theorem 3.1 in this note). A more detailed survey on random convex hulls is included in [8].

2. A linear system with a random matrix

Since the one-dimension n = 1 is trivial, we consider higher dimensions n ≥ 2. In the proof of the next result, a connec-
tion is established between the probabilities of hitting a convex hull and the non-negative solutions to a linear system.

Theorem 2.1. Let A be an n × m, 2 ≤ n ≤ m, matrix such that the entries are independent non-negative continuous random vari-
ables. Suppose that these random variables have the same mean μ, and are symmetric about the mean. Then the linear system 
AX = (1, 1, . . . , 1)T has a non-negative solution with probability:

1 − 2−m+1
n−2∑
k=0

(
m − 1

k

)
.

When m = n, it simplifies to 2−n+1.

Proof. We set the entries of A as {aij}, then 
∑m

j=1 aij x j = 1 for 1 ≤ i ≤ n. Summing over i, we obtain 
∑m

j=1(
∑n

i=1 aij)x j = n. 
Let c j = 1

n

∑n
i=1 aij , then 

∑m
j=1 c j x j = 1. Thus, we can rewrite the linear system 

∑m
j=1 aij x j = 1 as 

∑m
j=1(aij − c j)x j = 0. 

Let a1, . . . , am be the column vectors of A, and v = (1, 1, . . . , 1)T . If we denote w j = a j − c jv, then the linear system ∑m
j=1 aij x j = 1 for 1 ≤ i ≤ n has a non-negative solution if and only if there exist x1, x2, . . . , xm ≥ 0 with x1 +x2 + . . .+xm > 0

such that 
∑m

j=1 x jw j = 0. In other words, the origin 0 belongs to the convex hull of {w1, w2, . . . , wm}. We show that {w j}
are symmetric. Indeed,

P
{

w j > (t1, t2, . . . , tn)T }
= P

{
aij − 1

n

n∑
k=1

akj > ti,1 ≤ i ≤ n

}
= P

{
1

n

n∑
k=1

(aij − akj) > ti,1 ≤ i ≤ n

}

= P

{
1

n

n∑
k=1

[
(μ − aij) − (μ − akj)

]
> ti,1 ≤ i ≤ n

}

= P

{
−1

n

n∑
k=1

(aij − akj) > ti,1 ≤ i ≤ n

}
= P

{−w j > (t1, t2, . . . , tn)T }
.

Clearly, {w j} are random vectors in Rn that lie on the hyperplane L = {(y1, y2, . . . , yn) ∈ R
n : y1 + y2 + . . . + yn = 0}. Let 

p(k, m) be the probability that 0 does not belong to the convex hull of m symmetric random vectors in Rn that lie on a 
k-dimensional subspace of Rn . We now compute the probability p(n − 1, m). The method below is a probability version 
of a geometric argument of Wendel [11]. Let h be the indicator function of the event 0 /∈ conv(w1, w2, . . . , wm). That is, 
h(w1, w2, . . . , wm) = 1 if there exists a non-zero vector b such that 〈wi, b〉 ≥ 0 for all 1 ≤ i ≤ m, and h(w1, w2, . . . , wm) = 0
otherwise. Then,

p(n − 1,m) = P
{

0 /∈ conv(w1,w2, . . . ,wm)
} = Ewh(w1,w2, . . . ,wm).

Because {wi} are symmetric, if we let {εi} be i.i.d. Bernoulli random variables, then

p(n − 1,m) = EεEwh(ε1w1, ε2w2, . . . , εmwm).

Noticing that conditioning on ε′ = (ε1, ε2, . . . , εm−1), we have

p(n − 1,m) = Eε′EwEεmh(ε1w1, ε2w2, . . . , εmwm) = 1

2
Eε′EwEεmh(ε1w1, ε2w2, . . . , εm−1wm−1)

+ 1

2
Eε′Ew

[
2Eεmh(ε1w1, ε2w2, . . . , εmwm) − h(ε1w1, ε2w2, . . . , εm−1wm−1)

]
= 1

2
p(n − 1,m − 1) + 1

2
Eε′Ew R

where
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R := h(ε1w1, ε2w2, . . . ,wm) + h(ε1w1, ε2w2, . . . ,−wm) − h(ε1w1, ε2w2, . . . , εm−1wm−1).

We see that R ∈ {0, 1}, and R = 1 if and only if

h(ε1w1, ε2w2, . . . ,wm) = h(ε1w1, ε2w2, . . . ,−wm) = 1.

That is, there exist vectors b1, b2 such that 〈εiwi, b1〉 ≥ 0, 〈εiwi, b2〉 ≥ 0 for 1 ≤ i ≤ m − 1 and 〈wm, b1〉 ≥ 0, 〈wm, b2〉 ≤ 0. 
Thus we can find α, β > 0 such that for c = αb1 + βb2, we have 〈εiwi, c〉 ≥ 0 for 1 ≤ i ≤ m − 1, and 〈wm, c〉 = 0. On the 
other hand, if we can find such a vector c, then of course h(ε1w1, ε2w2, . . . , wm) = h(ε1w1, ε2w2, . . . , −wm) = 1. Therefore, 
R = 1 if and only if there exists a vector c such that c⊥wm such that 〈εiwi, c〉 ≥ 0 for 1 ≤ i ≤ m − 1. If we let ui be the 
orthogonal projection of wi on to w⊥

m for 1 ≤ i ≤ m − 1, then R = 1 if and only if h(ε1u1, ε2u2, . . . , εm−1um−1) = 1. From 
the fact that {ui} are vectors in Rn that lie on the (n − 2)-dimensional subspace w⊥

m ∩ L, it follows that

Eε′Ew R = Eε′Euh(ε1u1, ε2u2, . . . , εm−1um−1) = p(n − 2,m − 1).

Hence, we obtain the identity

p(n − 1,m) = 1

2
p(n − 1,m − 1) + 1

2
p(n − 2,m − 1)

for all m ≥ n ≥ 2. Note that p(1, k) = 2−k+1 and p(k, 1) = 1 for k ≥ 1. By using induction and the combinatorial identity(
m − 2

k

)
+

(
m − 2
k + 1

)
=

(
m − 1
k + 1

)
,

it is straightforward to check that

p(n − 1,m) = 2−m+1
n−2∑
k=0

(
m − 1

k

)

for all m ≥ n ≥ 2. �
3. Probability of avoiding a small disk in R2

Let random vectors {Xi}i=1,2,...,m be independently and uniformly distributed in the unit ball of R2. The result in Sec-
tion 2 states that the probability that the origin is not in the convex hull of {Xi}i=1,2,...,m is p(2, m) = m · 2−m+1. In this 
section, our goal is to find a more general result, namely, the probability that a ball with a small radius in R2 does not 
belong to the convex hull of {Xi}i=1,2,...,m . We will prove the following result.

Theorem 3.1. Suppose that {Xi}i=1,2,...,m are independently and uniformly distributed random vectors in the unit ball of R2. Let 
pδ(2, m) denote the probability that a ball with a small radius δ in R2 does not belong to the convex hull of {Xi}i=1,2,...,m. Then

pδ(2,m) = m

2m−1

(
1 − δ2)[1 − 2δ

√
1 − δ2

π
− 2

π
sin−1(δ)

]m−1

. (3.1)

Proof. There are two different cases: the closest point on the convex hull of {Xi}i=1,2,...,m to the origin is a vertex (see 
Case 2), and the closest point on the convex hull of {Xi}i=1,2,...,m to the origin is not a vertex but a point on an edge (see 
Case 1). For each case, we compute the probability respectively.
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Step 1. Let P and Q be two independently and uniformly distributed random points in the unit ball. We calculate the 
probability of the event E(r) that the distance between the origin and the line segment PQ is less than or equal to r, and 
the closest point to the origin is not P or Q . Let (λ, θ) be the polar coordinates of P . Let L be the line passing through P
and being perpendicular to OP. Then the line L divides the unit disk into two parts, say R1 and R2, where R2 is the larger 
region that contains the origin. Further, we let D be the disk with OP as its diameter. Then it is obvious that D ⊂ R2.

If Q ∈ R1, then P is the closest point to the origin. If Q ∈ D , then Q is the closest point to the origin. If Q ∈ R2 \ D , 
then the closest point of the line segment PQ to the origin is not P or Q .

If λ ≤ r, then for all Q ∈ R2 \ D , the distance between the origin and the line segment PQ is less than or equal to r; if 
λ > r, then to ensure that the distance between the origin and the line segment PQ is less than or equal to r, the point Q
must land in the region S which is between the two tangent lines from P to the circle centers at the origin with radius r.

In conclusion, we have the following: if λ ≤ r, then Q ∈ R2 \ D; if λ > r, then Q ∈ S ∩ (R2 \ D).
The set R2 has area π/2 + ∫ λ

0 2
√

1 − x2 dx, and D has area πλ2/4. Thus R2 \ D has area:

π/2 +
λ∫

0

2
√

1 − x2 dx − πλ2/4.

To calculate the area F := S ∩ (R2 \ D), we let T1 and T2 be the two tangent points. The angle between the two tangent 
lines is 2 sin−1(r/λ). We draw two lines through the origin, which are parallel to the two tangent lines. The region G that 
lies between these two lines and inside F has area sin−1(r/λ). To calculate the area of the region F \ G , we connect O with 
T1 and T2. Let A be the area between the line segment OT1 and the small arc OT1 on D . Then the area of F \ G is:

2

r∫
0

√
1 − x2 dx − 2A.

To calculate A, we let M be the center of D . Then � OMT1 = 2 sin−1(r/λ), the fan OMT1 has area (λ/2)2 sin−1(r/λ), and the 
OMT1 has area r

√
λ2 − r2/4. Hence, the area of F is:

sin−1(r/λ) + 2

r∫
0

√
1 − x2 dx − λ2

2
sin−1(r/λ) + 1

2
r
√

λ2 − r2.

Therefore, given P at (λ, θ), if λ ≤ r, then the event E(r) occurs with probability:

1

2
+ 2

π

λ∫
0

√
1 − x2 dx − λ2/4.

If λ > r, then the event E(r) occurs with probability:

1

π
sin−1(r/λ) + 2

π

r∫
0

√
1 − x2 dx − λ2

2π
sin−1(r/λ) + 1

2π
r
√

λ2 − r2.

Thus, the event E(r) occurs with probability:

P
{

E(r)
} =

r∫
0

(
1

2
+ 2

π

λ∫
0

√
1 − x2 dx − λ2/4

)
2λdλ

+
1∫

r

(
1

π
sin−1(r/λ) + 2

π

r∫
0

√
1 − x2 dx − λ2

2π
sin−1(r/λ) + 1

2π
r
√

λ2 − r2

)
2λdλ.

This implies that:

dP{E(r)}
dr

=
(

1

2
+ 2

π

r∫
0

√
1 − x2 dx − r2/4

)
2r −

(
1

2
+ 2

π

r∫
0

√
1 − x2 dx − r2/4

)
2r

+
1∫ (

1

π
√

λ2 − r2
+ 2

π

√
1 − r2 − λ2

2π
√

λ2 − r2
+ 1

2π

√
λ2 − r2 − r2

2π
√

λ2 − r2

)
2λdλ
r
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=
1∫

r

(
1 − r2

π
√

λ2 − r2
+ 2

π

√
1 − r2

)
2λdλ = 4

π

(
1 − r2)3/2

.

We note that here a particular case is P{E(1)} = ∫ 1
0

4
π (1 − r2)3/2 dr = 3

4 , which is the probability that the closest point is 
not reached at a vertex point.

Step 2. Now we calculate the probability P (δ) that the distance between the origin and the convex hull is at least δ. If 
the closest point is a vertex of the convex hull, then it could be any of the m points. Thus we need to first choose a point, 
say P (r, θ), and we have m different choices. Let L be the line passing through P , which is perpendicular to OP. Then all the 
other points must land on the outer side of the line L. The area of that region is 

∫ 1
r 2

√
1 − x2 dx. Thus, the corresponding 

probability is:

P1{δ} = m

1∫
δ

[
1

π

1∫
r

2
√

1 − x2 dx

]m−1

2r dr.

In particular, if δ = 1, then we have P (1) = 1/2. In other words, with probability 1/4, the closest point is a vertex.
If the closest point is not a vertex, then it is on the line segment between two vertices. Since any two vertices are equally 

likely, we have m(m − 1)/2 different choices. The probability in this case is:

P2{δ} = m(m − 1)

2

1∫
δ

[
1

π

1∫
r

2
√

1 − x2 dx

]m−2
4

π

(
1 − r2)3/2

dr.

Hence, the total probability is:

P (δ) = m

1∫
δ

[
1

π

1∫
r

2
√

1 − x2 dx

]m−1

2r dr

+ m(m − 1)

2

1∫
δ

[
1

π

1∫
r

2
√

1 − x2 dx

]m−2
4

π

(
1 − r2)3/2

dr

= m
(
1 − δ2)[ 2

π

1∫
δ

√
1 − x2 dx

]m−1

= m

2m−1
· (1 − δ2)[1 − 2δ

√
1 − δ2

π
− 2

π
sin−1 δ

]m−1

,

where the second equality is from integration by parts. �
4. Probability of avoiding a small ball in Rn (n ≥ 3)

Let i.i.d. random vectors {Xi}i=1,2,...,m be uniformly distributed in the unit ball of Rn , n ≥ 3. In this section, we study the 
probability that a ball with a small radius in Rn does not belong to the convex hull of {Xi}i=1,2,...,m . If we use a similar 
method as in Section 3, then new difficulties arise when taking into account too many different cases, and computing several 
complicated volumes, multiple integrals, etc. Instead of computing the exact value of the probability, we give non-trivial up-
per estimates of it in this section based on the idea formulated in Section 2. To this end, let pδ(k, m) be the probability that 
the ball in Rn with radius δ does not belong to the convex hull of {Xi}i=1,2,...,m , which lie on a k-dimensional subspace of Rn .

Theorem 4.1. Let {Xi}i=1,2,...,m be independently and uniformly distributed random vectors in the unit ball of Rn, n ≥ 3, and pδ(n, m)

be the probability that a ball with a small radius δ in Rn does not belong to the convex hull of {Xi}i=1,2,...,m. It holds that pδ(n, m) ≤
pδ∗(n, m) where pδ∗(n, m) solves:⎧⎪⎨

⎪⎩
pδ∗(n,m) = 1

2
pδ∗(n,m − 1) + 1

2
pδ∗(n − 1,m − 1),

pδ∗(k,1) = 1 − δk and pδ∗(1,k) = (1 − δ)k

2k−1
, for k ≥ 1.

(4.1)

In particular,

pδ(n,m) ≤ 1 − δn+1−m
(

1 + δ

2

)m−1

, for m ≤ n; (4.2)

pδ(n,n + 1) ≤ 1 − 1

2n

[
(1 + δ)n + δ − δ2]. (4.3)
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Remark 4.1. As used in Section 2, p(n, m) denote the probabilities that the origin does not belong to the convex hull of m
independent random vectors in Rn . The probabilities are

p(n,m) = 2−m+1
n−1∑
k=0

(
m − 1

k

)
for n < m,

and p(n, m) = 1 for n ≥ m. It is then obvious that a trivial upper bound of pδ(n, m) is p(n, m), that is pδ(n, m) ≤ p(n, m). 
This gives pδ(n, m) ≤ 1 for m ≤ n, and pδ(n, n + 1) ≤ 1 − 1

2n . Thus the upper bounds in (4.2) and (4.3) are slightly better 
than these.

Proof of Theorem 4.1. Following the idea in the proof of Theorem 2.1 in Section 2, we will show:

pδ(n,m) ≤ 1

2
pδ(n,m − 1) + 1

2
pδ(n − 1,m − 1). (4.4)

To this end, let h be the indicator function of the event that the ball with radius δ is not in the convex hull of {Xi}i=1,2,...,m , 
and {εi} be i.i.d. Bernoulli random variables. Then by the same reasoning in Section 2, we have, with ε′ = (ε1, . . . , εm−1):

pδ(n,m) = Eε′EXEεm h(ε1 X1, . . . , εm Xm) = 1

2
Eε′EXEεm h(ε1 X1, . . . , εm−1 Xm−1)

+ 1

2
Eε′EX

[
2Eεm h(ε1 X1, . . . , εm Xm) − h(ε1 X1, . . . , εm−1 Xm−1)

]
= 1

2
pδ(n,m − 1) + 1

2
Eε′EX R

where the random variable R ∈ {0, 1} is:

R = h(ε1 X1, . . . , Xm) + h(ε1 X1, . . . ,−Xm) − h(ε1 X1, . . . , εm−1 Xm−1).

In Section 2, an equivalent statement of the event R = 1 was found. But here we can only show

{R = 1} ⊆ {
h(ε1 X1, . . . , εm−1 Xm−1) = 1

}
. (4.5)

To see (4.5), we notice that when h(ε1 X1, . . . , Xm) = h(ε1 X1, . . . , −Xm) = 1, then the orthogonal projection ui of Xi onto 
X⊥

m , 1 ≤ i ≤ m − 1 should satisfy h(ε1u1, . . . , εm−1um−1) = 1. This is (4.5). Thus the probabilities pδ(n, m) satisfy (4.4)

with known boundary values pδ(k, 1) = 1 − δk and pδ(1, k) = (1−δ)k

2k−1 for k ≥ 1. Now we solve the corresponding difference 
equation (4.1). Obviously, pδ(n, m) ≤ pδ∗(n, m) from comparisons. What is more, Eq. (4.1) can be solved as:

pδ∗(n,m) = 1 − δn+1−m
(

1 + δ

2

)m−1

, for m ≤ n;

pδ∗(n,n + 1) = 1 − 1

2n

[
(1 + δ)n + δ − δ2]. (4.6)

Thus (4.2) and (4.3) are directly from (4.6). By inductions, it is also feasible to find general pδ∗(n, m), which have more 
complicated expressions. �
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