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We prove that if pure derivatives of a function on R
n are complex measures, then their 

lower Hausdorff dimension is at least n − 1. The derivatives with respect to different 
coordinates may be of different order.
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r é s u m é

Supposons que les dérivées pures (pas nécéssairement du même ordre) d’une fonction 
sur R

n soient des mesures de Radon finies. On montre que leur dimension inférieure de 
Hausdorf est alors au moins n − 1.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We begin with a well-known fact: if a function f is in BV, then the lower Hausdorff dimension of ∇ f is not less 
than n − 1 (see [1], Lemma 3.76). By the lower Hausdorff dimension of a vector-valued complex measure μ, we mean:

dimμ = inf
{
α | there is a Borel set F with μ(F ) �= 0, dim F ≤ α

}
. (1)

In [11], this fact was treated as a manifestation of a certain more general uncertainty-type principle. We use the notation 
from that paper. Namely, let φ : Sn−1 → Sn−1 be a mapping. Consider the class Mφ of vector-valued signed measures μ such 
that μ̂(ξ) ‖ φ(

ξ
|ξ | ) for all ξ ∈ R

n \ {0}. The celebrated theorem of Uchiyama [13] shows that if φ(ξ) is not parallel to φ(−ξ)

for all ξ ∈ Sn−1, then every μ in Mφ is absolutely continuous. However, can one say something if this condition does not 
hold? We cite a simpler version of Theorem 3 from [11].

Theorem 1.1. Suppose that the image of φ contains n linearly independent points φ(h1), φ(h2), . . . , φ(hn) and φ is α-Hölder in 
neighborhoods of hi , i = 1, 2, . . . , n, α > 1

2 . Then dimμ ≥ 1 for all μ ∈ Mφ .
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The relationship between BV and Mφ can be expressed by the formula {∇ f | f ∈ BV(Rn)} = MId, where Id is the identity 
map on the sphere. In this particular case, Theorem 1.1 is weaker (we get only dimension 1). However, it describes a much 
more general setting. One can make a courageous conjecture (Conjecture 1 in [11]).

Conjecture 1.2. Suppose that the function φ is Lipschitz and its image contains n linearly independent points. Then dimμ ≥ n − 1 for 
all μ ∈ Mφ .

Not being able to prove the conjecture, we state a result that lies towards it. In what follows, Di means “the derivative with 
respect to xi ”.

Theorem 1.3. Let m be a natural number. Let f be a function such that Dm
i f is a complex measure for all i. Then dimμ ≥ n − 1, 

where μ is the vector-valued complex measure whose components are Dm
i f .

This theorem is a particular case of Conjecture 1.2, μ ∈ Mφ , where φ(ξ) = ξm

|ξm| . When the orders of derivation differ, the 
homogeneity is not isotropic. However, in this case we still have the same principle.

Theorem 1.4. Let m1, m2, . . . , mn be natural numbers. Let f be a function such that Dmi
i f is a complex measure for all i. Then dimμ ≥

n − 1, where μ is the vector-valued complex measure whose components are Dmi
i f .

The basic fact about BV-functions we started with can be proved by several methods. In [1], the proof was based on 
the co-area formula for BV-functions. This gives more information about those “parts” of ∇ f that have dimension n − 1: 
they are situated on the jumps of f . However, the applicability of the methods from [1] to Conjecture 1.2 and even to 
Theorem 1.3 is questionable. The proof of Theorem 1.1 is based on the application of F. and M. Rieszs’ classical theorem 
(see [8], p. 28) on the continuity of an analytic complex measure. This gives only dimension 1 (it, however, allows one to 
disregard entirely the algebraic structure of φ).

Our strategy is, in a sense, a mixture of the two proofs indicated above. The co-area formula is replaced with the Sobolev 
embedding theorem with the limiting summation exponent, and Rieszs’ theorem is replaced with a certain modification of 
the Frostman lemma.

In Section 2 we prove Theorem 1.4 (and Theorem 1.3 as a particular case), except for the modification of Frostman lemma, 
which we prove in Section 3. Last Section 4 contains some examples and some suggestions how to prove Conjecture 1.2.

2. Proof of the theorem

We begin with the discussion of the embedding theorem we will use. We will need some Besov spaces. The reader 
unfamiliar with them can either consult [2,10], or skip the details and pass to Theorem 2.2 directly.

By W m
1 , m = (m1, m2, . . . , mn), we denote the completion of the set C∞

0 (Rn) with respect to the norm ‖ f ‖W m
1

=∑n
i=1 ‖Dmi

i f ‖L1 . Another norm on the set C∞
0 describes the one-dimensional Besov spaces (i.e. we measure the smoothness 

of a function in R
n with respect to one coordinate),

‖ f ‖
Bi,�

q,θ
=

( ∞∫
0

(
h−�

∥∥Δs
i (h) f

∥∥
Lq

)θ dh

h

) 1
θ

.

Here i is the number of the coordinate, i = 1, 2, . . . , n, Δs
i (h) is the operator of finite difference of order s and step h with 

respect to the i-th coordinate, s > �.
We cite Theorem 4 from [5] (see also Theorem B in [6] and [7]).

Theorem 2.1. Let f be a function in W m
1 . Then, for each i = 1, 2, . . . , n and any �i < mi , the inequality

‖ f ‖
B

i,�i
q,1

�
n∑

j=1

∥∥D
m j

j f
∥∥

L1

holds true if the parameters satisfy the homogeneity condition �i = mi(1 − q−1
q

∑n
j=1

1
m j

).

Now we fix �i = mi − 1; therefore, q−1
q = (

∑n
j=1

mi
m j

)−1. This identity matches its individual q to each mi , we denote it by qi . 
Using the easy embedding (see [10], p. 62) for θ = 1∥∥Dmi−1

i f
∥∥

Lqi � ‖ f ‖
B

i,mi−1
qi ,1

,

we get the following embedding theorem without Besov spaces.
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Theorem 2.2. Let f be a function in W m
1 . Then, for each i = 1, 2, . . . , n,

∥∥Dmi−1
i f

∥∥
Lqi �

n∑
j=1

∥∥D
m j

j f
∥∥

L1

if the parameters satisfy the homogeneity condition qi−1
qi

= (
∑n

j=1
mi
m j

)−1 .

Suppose now that f is a function with compact support such that μi = Dmi
i f is a complex measure for all i. Then,

∥∥Dmi−1
i f

∥∥
Lqi �

n∑
j=1

Varμ j . (2)

This can be deduced from Theorem 2.2 by a simple limiting argument. We skip the details.
Let ϕ be a test function in C∞

0 (Rn−1) supported in the unit ball. Let ϕr(x) = ϕ(r−1x), r > 0. For x = (x1, x2, . . . , xn) ∈ R
n

we write x[i] for the (n − 1)-dimensional vector that is obtained from x by forgetting the i-th coordinate (for example, 
for n = 3, x[2] = (x1, x3)). By Br(z) we denote the (n − 1)-dimensional ball of radius r centered at z.

Lemma 2.3. Let the balls Br j (y j) be disjoint, and let ψ ∈ C∞
0 (R) be a test function. Suppose that f is a compactly supported function. 

If μ = (Dmi
i f )i is a complex measure, then, for all i = 1, 2, . . . , n and any ϕ ∈ C∞

0 supported in the unit ball,

∑
j

∣∣∣∣
∫
Rn

ψ(xi)ϕr j (x[i] + y j)dμi(x)

∣∣∣∣ �
(∑

j

rn−1
j

) 1
q′

i Varμ

for some fixed q′
i and all y j ∈ R

n−1 and r j < 1 uniformly (the constants may depend on ϕ and ψ ).

Proof. For simplicity, let i = 1. We can write:

∑
j

∣∣∣∣
∫
Rn

ψ(x1)ϕr j (x[1] + y j)dμ1(x)

∣∣∣∣ =
∑

j

∣∣∣∣
∫
Rn

ψ ′(x1)ϕr j (x[1] + y j)Dm1−1
1 f (x)dx

∣∣∣∣

≤
∑

j

∥∥∥∥ψ ′(x1)ϕr j (x[1] + y j)

∥∥∥∥
Lq′

1

∥∥Dm1−1
1 f

∥∥
Lq1 (Br j (y j))

�
∑

j

r

n−1
q′

1
j

∥∥Dm1−1
1 f

∥∥
Lq1 (Br j (y j))

≤
(∑

j

rn−1
j

) 1
q′

1

(∑
j

∥∥Dm1−1
1 f

∥∥q1

Lq1 (Br j (y j))

) 1
q1 ≤

(∑
j

rn−1
j

) 1
q′

1
∥∥Dm−1

1 f
∥∥

Lq1

�
(∑

j

rn−1
j

) 1
q′

1 ‖μ‖.

Here q1 is the exponent taken from Theorem 2, and q′
1 is its adjoint. The first inequality is the Hölder inequality, the second 

one is rescaling, the third one is Hölder again, and the fourth one is inequality (2). �
The next lemma is a generalization of Frostman’s lemma (see [9], p. 112, for the original).

Lemma 2.4. Suppose that ϕ ∈ C∞
0 (Rn) is a radial non-negative function supported in the unit ball that decreases monotonically as the 

radius grows, and ϕ(x) = 1 when |x| ≤ 3
4 . Let μ be a complex measure such that, for every collection Br j (x j) of n-dimensional balls 

such that B3r j (x j) are disjoint, we have:

∑
j

∣∣∣∣
∫
Rn

ϕ3r j (x j + y)dμ(y)

∣∣∣∣ �
(∑

rα
j

)β

for some positive α and β . Then dim(μ) ≥ α.

We postpone its proof till Section 3.
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Lemma 2.5. Let μ be a complex Borel measure on R
k+l . Suppose that μ(I × A) = 0 for every parallelepiped I ⊂ R

k and every A ⊂R
l

such that dim A < α. Then dimμ ≥ α.

Proof of Theorem 1.3. Suppose the contrary, let F be some Borel set such that dim F < n −1, but μ(F ) �= 0. We may assume 
that μ1(F ) �= 0 (by symmetry) and F is compact (due to the regularity of the measure). Multiplying f by a test function 
that equals 1 on F , we make f compactly supported without loosing the condition that its higher order derivatives are 
signed measures. To get a contradiction, it suffices to prove that for every set A ⊂ R

n−1 such that dim A < n − 1 and every 
function ψ ∈ C∞

0 (R), we have:
∫

R×A

ψ(x1)dμ1(x) = 0. (3)

Then, approximating the characteristic function of an interval I by smooth functions, we get the hypothesis of Lemma 2.5
with α = n − 1, which, in its turn, asserts that μ1(F ) = 0.

Consider now a complex measure μψ on R
n−1 given by the formula μψ(B) = ∫

R×B ψ(x1) dμ1(x). By Lemma 2.3, the 
measure μψ satisfies the hypothesis of Lemma 2.4 with α = n − 1. Therefore, dimμψ ≥ n − 1 and (3) holds for all A
with dim A < n − 1. �
3. Proof of Lemma 2.4

To prove Lemma 2.4, we need some preparation. First, it suffices to prove Lemma 2.4 for real-valued signed measures 
only.

The next lemma provides a softer substitute for the Lebesque differentiation theorem for an arbitrary Borel measure.

Lemma 3.1. Let μ be a signed measure, let A+ and A− be the sets of its Hahn decomposition. Consider the set

P+ = {
x ∈ A+ | ∃δ(x) such that ∀r < δ(x)μ+

(
Br(x)

) ≤ 10μ
(

Br(x)
)}

. (4)

Then μ(P+) = μ(A+).

Consider now the sets P (N)
+ given by the formula

P (N)
+ =

{
x ∈ A+ | ∀r <

1

N
,μ+

(
Br(x)

) ≤ 10μ
(

Br(x)
)}

.

Surely, P+ = ⋃
N P (N)

+ . Therefore, for every ε > 0 there exists N ∈ N such that μ+(P (N)
+ ) ≥ μ+(A+) − ε. We need to change 

inequality (4) slightly.

Lemma 3.2. Suppose that for some fixed x and all r ≤ 2δ the inequality μ+(Br(x)) ≤ 10μ(Br(x)) holds true. Then∫
ϕr(x + y)dμ+(y) ≤ 10

∫
ϕr(x + y)dμ(y) (5)

for all r < δ and any radial non-negative test function ϕ supported in B1(0) that decreases monotonically as the radius grows.

Lemma 3.3. Let μ be a signed measure. Let μ+ and μ− be its Hahn decomposition. Then dimμ = min(dimμ+, dimμ−).

Proof of Lemma 2.4. We assume the contrary; suppose that there exists some Borel set F such that μ(F ) �= 0, but dim(F ) <
α− < α. By Lemma 3.3, we may assume that F ⊂ A+; moreover, we may assume that F ∈ P (N)

+ for some big N (because 
these sets tend to A+ in measure) and that F is compact (by the regularity of μ). Let μ(F ) = c0. By the definition of the 
Hausdorff dimension, there exists a covering of F with the balls Br j (x j) whose centers x j lie in F , whose radii r j do not 
exceed δ (which we take to be less than 1

10N ), and
∑

j rα−
j ≤ c1 for some uniform constant c1. We divide the set of balls 

into the classes of roughly equal balls: Ek = { j | r j ∈ (2−k−1, 2−k]}. Surely, |Ek| ≤ 2kα−
c1. By the pigeonhole principle, there 

exists some k � log 1
δ

such that μ+(F ∩ ⋃
j∈Ek

Br j (x j)) ≥ c0
k2 . We fix δ and also fix this k for a while. Let Dk be a subset 

of Ek such that {x j | j ∈ Dk} is a maximal 2−k-separated subset of {x j | j ∈ Ek}. Then

(i)
⋃

j∈Dk
B3r j (x j) ⊃ F ∩ ⋃

j∈Ek
B j , so

∑
j∈Dk

μ+(B3r j (x j)) ≥ c0
k2 ;

(ii) the collection B4r j (x j), j ∈ Dk covers each point only a finite number of times (uniformly).
Using these two statements and recalling that ϕ equals 1 on B 3 (0), we can write:
4
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c0

k2
≤

∑
j∈Dk

μ+
(

B3r j (x j)
) ≤

∑
j∈Dk

∫
ϕ4r j (x j + y)dμ+(y)

≤ 10
∑
j∈Dk

∫ ∣∣ϕ4r j (x j + y)dμ(y)
∣∣ �

(∑
j∈Dk

rα
j

)β

≤ (|Dk|2−kα)β � cβ

1 2βk(α−−α).

We get a contradiction for δ small. �
4. Examples and conjectures

We note that Theorem 1.4 is sharp in the sense that one cannot rise the dimension. Consider a one-dimensional signed 
measure Δs

h = ∑s
j=0(−1)s− j C j

s δhj . This measure has s vanishing moments, therefore, there exists a compactly supported 
function f s

h such that Ds f s
h = Δs

h . Consider a function F on R
n given by the formula F (x) = ∏n

i=1 f mi
h (xi). Then, for 

each i, Dmi
i F is a measure supported on the (n − 1)-dimensional hypercubes

{
x | xi = hj, ∀k �= i, xk ∈ [

0, (mk + 1)h
]}

,

here j = 0, 1, 2, . . . , mi . This proves that Theorem 1.4 is sharp.
Theorem 4 from [5] we have used is very strong. For the isotropic case, what we need is the inequality ‖Dm−1

i f ‖
L

n
n−1

≤
‖ f ‖W m

1
, which is much easier. However, even embedding theorems from [12] are not sufficiently strong for our purposes in 

the general setting (they require additional assumptions on the numbers mi ).
We believe that the relationship between Conjecture 1.2 and embedding theorems are deeper. Maybe, embedding the-

orems for vector fields from [15] may help (there was a lot of progress in the recent years for the isotropic case, starting 
with [3,14]; see [4] for some examples of anisotropic theorems of such kind).
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