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In this note we explain an analogy of moduli of canonically polarized varieties and 
of Calabi–Yau manifolds, when these are equipped with Kähler–Einstein forms. Given a 
holomorphic family f : X → S of canonically polarized varieties, the direct image sheaves 
Rn−q f∗Ω p

X /S (KX /S ) carry induced Hermitian metrics, whose curvatures enjoy similar 
properties. Due to the absence of a Torelli theorem, we construct a Finsler metric in the 
orbifold sense in order to conclude about the hyperbolicity of the moduli stack.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous expliquons une analogie entre les espaces de modules des variétés 
canoniquement polarisées et ceux des variétés de Calabi–Yau, lorsque celles-ci sont 
équipées de métriques de Kähler–Einstein. Étant donné une famille f : X → S de variétés 
canoniquement polarisées, les faisceaux images directes Rn−q f∗Ω p

X /S (KX /S ) possèdent 
des métriques hermitiennes induites, dont les tenseurs de courbure jouissent de propriétés 
analogues. En raison de l’absence de théorème de type Torelli, nous construisons une 
métrique de Finsler au sens orbifold afin de pouvoir conclure à l’hyperbolicité du champ de 
modules.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Moduli spaces of smooth, polarized Kähler varieties share various properties with bounded symmetric domains and their 
quotients. We will see that the invariant metric on a bounded symmetric domain (that descends to any such quotients as an 
orbifold metric) can be seen as a model of a distinguished metric on a moduli space. It actually occurs as such a metric for 
compact manifolds in the Ricci flat cases of polarized complex tori, complex symplectic manifolds, and Calabi–Yau manifolds.
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In complex dimension one, a functorial construction was given by A. Weil in [16], who unified classical Teichmüller 
theory with deformation theory in the sense of Kodaira and Spencer: infinitesimal deformations were described as elements 
of a cohomology group, for which a distinguished metrics on the fibers (namely the hyperbolic metrics) provided a natural 
Hermitian inner product. This inner product had been considered before by H. Petersson in the context of automorphic 
forms. The Kähler property of the Weil–Petersson metric and the negativity of its Ricci curvature were first shown by Ahlfors 
in [1,2], and the curvature tensor was computed by Wolpert in [17]. At this point, one could see that the Weil–Petersson 
metric satisfies a curvature condition that is stronger than the negativity of the sectional curvature (cf. [6])—an even stronger 
property was later shown by Liu, Sun and Yau in [5].

A canonical Hermitian product on the tangent space of a moduli space is mostly called (generalized) Weil–Petersson met-
ric. Such a product is given in terms of harmonic representatives of Kodaira–Spencer classes with respect to distinguished 
metrics on the fibers. For canonically polarized varieties as fibers, the natural choices are Kähler–Einstein metrics of con-
stant negative curvature. The curvature of the generalized Weil–Petersson metric was computed by Siu in [12], and in [7], 
and efforts were made to show its negativity. In view of the result of Viehweg and Zuo [14] on the Brody hyperbolicity of 
this moduli stack, it became apparent that higher cohomology groups had to be included. In [11], for a family F :X → S of 
canonically polarized manifolds, the curvature of twisted Hodge bundles Rn−p f∗Ω p

X /S (KX /S) was computed. It satisfies a 
lower estimate by a term that formally equals the curvature of a period domain/moduli space of polarized Ricci-flat Kähler 
manifolds.

The new idea was to introduce Kodaira–Spencer maps of higher degree in [10,11]. These are notably different from 
those maps that arise in relation to obstruction theory and Massey products. The higher-order terms were being used to 
offset unwanted contributions of the curvature from lower-order terms yielding a Finsler metric of negative holomorphic 
curvature on any relatively compact subset of the moduli space. In this note, we draw a somewhat stronger inequality from 
our curvature formula which yields the negativity of the above Finsler metric implying a Kobayashi hyperbolicity of the 
moduli stack of canonically polarized varieties.

2. Setup

We follow the setup from [9]. Notation and all results are also contained in [11,10]. We summarize these below.
We denote by X → S a holomorphic family of n-dimensional canonically polarized varieties Xs = f −1(s) for s ∈ S , 

equipped with Kähler–Einstein forms ωs of constant Ricci curvature −1 according to Yau’s solution to the Calabi conjecture. 
These induce Hermitian metrics hs on the canonical bundles KXs = Ωn

Xs
and thus a Hermitian metric h on the relative 

canonical bundle KX /S . We denote by ωX = −√−1∂∂ log h the curvature form.

Theorem 1. (See [9, Theorem 1].) The form ωX = √−1∂∂ log h is a Kähler form on X provided the family is effectively parameterized, 
and the restrictions ωX |Xs are equal to the Kähler–Einstein forms ωXs on the fibers.

The cohomology groups Hn−p(Xs, Ω
p
Xs

(KXs )) carry a natural Hermitian inner product, which is induced by Kähler–Ein-

stein metrics on the fibers applied to harmonic representatives. Let A = Aα
β
∂αdxβ be a harmonic Kodaira–Spencer form for 

a fixed fiber. Then the cup product together with the contraction defines mappings:

A ∪ : A0,n−p(
Xs,Ω

p
Xs

(KXs )
) → A0,n−p+1(Xs,Ω

p−1
Xs

(KXs )
)

(1)

A ∪ : A0,n−p+1(Xs,Ω
p−1
Xs

(KXs )
) → A0,n−p(

Xs,Ω
p
Xs

(KXs )
)
. (2)

These will be applied to harmonic sections ψ . On the level of cohomology, for all p we have:

Hn−p(
Xs,Ω

p
Xs

(KXs )
) → Hn−p+1(Xs,Ω

p−1
Xs

(KXs )
)
, ψ �→ H(A ∪ ψ) (3)

and

Hn−p+1(Xs,Ω
p−1
Xs

(KXs )
) → Hn−p(

Xs,Ω
p
Xs

(KXs )
)
, ψ �→ H(A ∪ ψ) (4)

where H denotes the harmonic projection. Assuming local freeness of direct image sheaves, sections of these are given by 
∂-closed forms, whose restrictions to fibers are harmonic (cf. [9, Lemma 2]). We state the formula for the curvature for 
diagonal terms (the general formula follows by polarization).

Theorem 2. (See [9, Theorem IV].) The curvature tensor for Rn−p f∗Ω p
X /S (KX /S) is given by

R(A, A,ψ,ψ) =
∫
Xs

(� + 1)−1(A · A) · (ψ · ψ) g dV +
∫
Xs

(� + 1)−1(A ∪ ψ) · (A ∪ ψ) g dV

+
∫

(� − 1)−1(A ∪ ψ) · (A ∪ ψ) g dV . (5)
Xs
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Corollary 1.

R(A, A,ψ,ψ) ≥ Pn
(
d(Xs)

) · ‖A‖2 · ‖ψ‖2 + ∥∥H(A ∪ ψ)
∥∥2 − ∥∥H(A ∪ ψ)

∥∥2
(6)

where Pn(d(Xs)) is a positive function that depends on the diameter of the fiber.

3. Analogies

The Hodge bundles Rn−p f∗Ω p
X /S carry connections arising from the flat connection of Rn f∗C. The curvatures were 

computed by Griffiths (cf. [15]). In the above notation, the theorem reads as follows.

Theorem 3. (See [4, (5.4)].) The curvature tensor Rh of the Hodge bundle Eq = Rq f∗Ωn−q
X /S at a point s ∈ S is given by

Rh(A, A,ψ,ψ) = ∥∥H(A ∪ ψ)
∥∥2 − ∥∥H

(
(A∪)tψ

)∥∥2
, (7)

where (A∪)t : Hn−p(Xs, Ω
p
Xs

) → Hn−p−1(Xs, Ω
p+1
Xs

) denotes the adjoint map with respect to the L2 inner product.

Remark 1. Consider both cases, the Hodge bundles with fibers Hn−p(Xs, Ω
p
Xs

) for families of polarized Ricci-flat Kähler 
manifolds and the bundles with fibers Hn−p(Xs, Ω

p
Xs

(KXs )) for families of canonically polarized varieties equipped with 
Kähler–Einstein metrics of constant negative curvature.

Then the adjoint maps of (1) (and (3) resp.) are (2) (and (4) resp.). So these are given by the cup product with A. In 
particular, (7) reads

Rh(A, A,ψ,ψ) = ∥∥H(A ∪ ψ)
∥∥2 − ∥∥H(A ∪ ψ)

∥∥2
,

and (6) yields the analogue inequality

R(A, A,ψ,ψ) ≥ ∥∥H(A ∪ ψ)
∥∥2 − ∥∥H(A ∪ ψ)

∥∥2
. (8)

We include here the proof. Let A = Aα
β
∂αdzβ be a harmonic Kodaira–Spencer form on Xs . Since the polarization is 

constant in the family, the class of A ∪ωXs vanishes. Because of the harmonicity of A the form Aβδ dzβ ∧dzδ is also harmonic 
and hence vanishes. So the corresponding tensor Aβδ is symmetric. Now it follows immediately from the definition of the 
inner product that the maps from (1) and (2) are adjoint to each other. In the next step, the morphisms from (1) and (2)
are applied to harmonic forms ψ ∈A0,n−p(Xs, Ω

p
Xs

(KXs )) (or A0,n−p(Xs, Ω
p
Xs

) resp.) and χ ∈A0,n−p+1(Xs, Ω
p−1
Xs

(KXs )) (or 
A0,n−p(Xs, Ω

p
Xs

) resp.). For the inner products, we get that (H(A ∪ ψ), χ) = (A ∪ ψ, χ) = (ψ, A ∪ χ) = (ψ, H(A ∪ χ)). �
4. Higher-order Kodaira–Spencer maps

We recall the situation. Let f : X → S be a holomorphic, effectively parameterized family of canonically polarized vari-
eties Xs , s ∈ S of complex dimension n. Denote by ρ : Ts S → H1(Xs, TXs ) the Kodaira–Spencer map.

Definition 1. The p-th Kodaira–Spencer map is defined on the symmetric product of the tangent space of S , namely 
ρ p : S pTS,s → H p(Xs, ΛpTXs ). It is induced by the classical Kodaira–Spencer map together with the natural morphism 
S p H1(Xs, TXs ) → H p(Xs, ΛpTXs ).

If S is a curve, then the p-th Kodaira–Spencer map defines a Hermitian metric on TS . Namely, for any tangent vector u, 
the Kodaira–Spencer class is represented by its harmonic representative A ∈ A0,1(Xs, TXs ), and for p ≥ 1 the harmonic 
representative Ap := H(A ∧ . . . ∧ A) ∈ A0,p(Xs, ΛpTXs ) is taken. The spaces of harmonic p-forms with values in the p-th 
exterior powers of the tangent bundle of a fiber carry a natural L2-inner product that is induced by the Kähler–Einstein 
metrics on a fiber.

5. Application of the curvature estimates

Our result (Theorem 2) yields the curvature of the dual bundles R p f∗ΛpTX /S . The cup product with A has to be replaced 
with a wedge product with A:

A ∧ : A0,p(
Xs,Λ

pTXs

) → A0,p+1(Xs,Λ
p+1TXs

)
(9)

A ∧ : A0,p+1(Xs,Λ
p+1TXs

) → A0,p(
Xs,Λ

pTXs

)
. (10)



838 G. Schumacher / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 835–840
Again denote by H the harmonic projection. Our estimate (8) now reads:

R(A, A, ν, ν) ≤ −∥∥H(A ∧ ν)
∥∥2 + ∥∥H(A ∧ ν)

∥∥2
. (11)

(Here A ∧ ν ∈A(0,p+1)(Xs, Λp+1TXs ) and A ∧ ν ∈A(0,p−1)(Xs, Λp−1TXs ).)
Like in [10,11], we consider Ap = H(A ∧ . . . ∧ A), and set ν = Ap , μ = Ap−1.
Identifying a tangent vector ∂/∂s with a harmonic Kodaira–Spencer form A, we get:

−∂2 log(‖Ap‖2)

∂s∂s
≤ R

(
A, A, Ap, Ap

)
/
∥∥Ap

∥∥2
.

We use the semi-norms G p such that

‖A‖p = ∥∥Ap
∥∥1/p

.

These are continuous, where the Ap vanish, and differentiable elsewhere. The curvatures of the induced Finsler pseudo-
metrics for a tangent vector ∂/∂s corresponding to the tensor A satisfy:

K p = −∂2 log(‖A‖2
p)

∂s∂s
/‖A‖2

p ≤ R
(

A, A, Ap, Ap
)
/p‖A‖2+2p

p .

The estimate [9, (60), Lemma 7] can be improved using the following inequality.

Lemma 1. (See [13, Lemma 13(ii)].) Let μ ∈A(0,p−1)(Λp−1TXs ) be harmonic, A and ν as above. Then∥∥H(A ∧ ν)
∥∥2 ≥ ∣∣(H(A ∧ μ),ν

)∣∣2
/‖μ‖2. (12)

Proof. The claim follows immediately from Remark 1 and from the Cauchy–Schwarz inequality. �
We now follow our earlier arguments: For p > 1, we set ν = A p , and μ = Ap−1 in (12); we apply our main estimate (11)

with An+1 = 0:

R
(

A, A, Ap, Ap
) ≤ − ‖Ap‖4

‖Ap−1‖2
+ ∥∥Ap+1

∥∥2
,

and

K p = −∂2 log(‖A‖2
p)

∂s∂s
/‖A‖2

p ≤ 1

p

(
−

( ‖A‖2
p

‖A‖2
p−1

)p−1

+
(‖A‖2

p+1

‖A‖2
p

)p+1)
.

For p = 1, estimates are known (cf. [12,7]); we have ‖H(A ∧ A)‖2 = ‖A‖2/vol(Xs) so that

R(A, A, A A) ≤ −c · ‖A‖2 + ‖A2‖2

‖A‖2

with c := 1/vol(Xs). (In fact c := 2/vol(Xs) can be taken.) Hence

K1 ≤ −c + ‖A‖4

‖A2‖2

Now

K1 ≤ −c + G2
2

G2
1

; K p ≤ 1

p

(
− G p−1

p

G p−1
p−1

+ G p+1
p+1

G p+1
p

)
for p > 1 with Gn+1 := 0.

We use a Finsler metric H , a sum of the metrics G p with positive coefficients of the form p αp

H =
n∑

p=1

p αp G p .

So

K H ≤ 1

H2

n∑
p αp G2

p K p
p=1
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according to [8, Lemma 3]. This inequality implies:

K H ≤ 1

H2

(
−c · α1G2

1 −
n∑

p=2

(
αp

G p+1
p

G p−1
p−1

− αp−1
G p

p

G p−2
p−1

))
. (13)

We arrive at the following sharper version of [9, Prop. 15].

Theorem 4. The above functorial construction yields a Finsler metric for effectively parameterized families of canonically polarized 
manifolds that descends to the moduli space in the orbifold sense. For suitable coefficients 0 < α1 ≤ α2 ≤ . . . ≤ αn, the curvature of 
the Finsler metric is bounded from above by a negative constant that only depends upon the dimension and the volume of the fibers.

The theorem together with Demailly’s version of the Ahlfors Lemma [3, 3.2] (cf. [9, Prop. 13]) implies the Kobayashi 
hyperbolicity of the moduli stack: the harmonic Kodaira–Spencer tensors As depend in a C∞ way upon the parameter by 
[9, Prop. 2], and so do exterior powers. For a family over a (smooth) curve C , the tensors H(As ∧ . . . ∧ As) = Ap

s are locally 
bounded everywhere and differentiable in s ∈ C over the complement of the discrete set of points where dim H p(Xs, ΛpTXs )

is not constant.
The proof of Theorem 4 follows in an elementary way from (13) by adjusting the constants αp , based upon the simple 

inequality below.

Lemma 2. Let p ∈N. Then

f (x) = xp+1 − xp − x2/2 + 1/2 ≥ 0

for all x ≥ 0 .

Lemma 3. Let αp > 0 for p = 1, . . . , n. Then for all xp ≥ 0

n∑
p=2

(
αpxp+1

p − αp−1xp
p
)
x2

p−1 · . . . · x2
1

≥ 1

2

(
−α3

1

α2
2

x2
1 + αn−1

n−1

αn−2
n

x2
n · . . . · x2

1 +
n−1∑
p=2

(
α

p−1
p−1

α
p−2
p

− α
p+2
p

α
p+1
p+1

)
x2

p · . . . · x2
1

)
(14)

holds.

Proof. Use 
α

p+1
p−1

α
p
p

f (
αp

αp−1
xp) ≥ 0 from Lemma 2 and take a sum. �

Proof of the Theorem. We may replace the square of a sum in H2 by the sum of the squares relaxing the estimate by a 
constant positive factor. Hence it is sufficient to show that

−c · α1G2
1 −

n∑
p=2

(
αp

G p+1
p

G p−1
p−1

− αp−1
G p

p

G p−2
p−1

)
≤ −

n∑
p=1

γp G2
p (15)

for some γ j > 0. Obviously, we can chose α1 arbitrarily and define α1 < α2 < α3 < . . . < αn inductively so that the coeffi-
cients

γ1 = c · α1 − 1

2

α3
1

α2
2

, γp = 1

2

(
α

p−1
p−1

α
p−2
p

− α
p+2
p

α
p+1
p+1

)
for p = 2, . . . ,n − 1 and γn = 1

2

αn−1
n−1

αn−2
n

of x2
p · . . . · x2

1 in (14) are positive. Now we set xp = G p/G p−1, and (15) follows. �
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