Number theory/Algebra

Joubert's theorem fails in characteristic 2

Zinovy Reichstein ${ }^{1}$
Department of Mathematics, University of British Columbia, Vancouver, Canada

A R T I CLE IN F O

Article history:

Received 24 June 2014
Accepted after revision 7 August 2014
Available online 18 September 2014
Presented by Jean-Pierre Serre

Abstract

Let L / K be a separable field extension of degree 6. A 1867 theorem of P. Joubert asserts that if $\operatorname{char}(K) \neq 2$, then L is generated over K by an element whose minimal polynomial is of the form $t^{6}+a t^{4}+b t^{2}+c t+d$ for some $a, b, c, d \in K$. We show that this theorem fails in characteristic 2.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit L / K une extension de corps séparable de degré 6. En 1867, P. Joubert a démontré que, si la caractéristique de K est différente de 2 , l'extension L / K est engendrée par un élément dont le polynôme minimal est de la forme $t^{6}+a t^{4}+b t^{2}+c t+d$, pour des éléments convenables $a, b, c, d \in K$. Dans cette note, nous démontrons que ce théorème ne s'étend pas à la caractéristique 2 .
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The starting point for this note is the following classical theorem.

Theorem 1. (See P. Joubert, 1867 [6]) Let L / K be a separable field extension of degree 6 . Assume char $(K) \neq 2$. Then there is a generator $y \in L$ for L / K (i.e., $L=K(y)$) whose minimal polynomial is of the form

$$
\begin{equation*}
t^{6}+a t^{4}+b t^{2}+c t+d \tag{2}
\end{equation*}
$$

for some $a, b, c, d \in K$.

Joubert [6] gave a formula, which associates with an arbitrary generator x for L / K another generator $y \in L$ whose minimal polynomial is of the form (2). He did not state Theorem 1 in the above form, did not investigate under what assumptions on L, K and x his formula applies, and, most likely, only considered fields of characteristic zero. A proof of Theorem 1 based on an enhanced version of Joubert's argument has been given by H. Kraft [8, Main Theorem (b)]. A different (earlier) modern proof of Theorem 1, based on arithmetic properties of cubic hypersurfaces, is due to D. Coray

[^0][2, Theorem 3.1]. (Coray assumed that $\operatorname{char}(K) \neq 2,3$.) Since both of these proofs break down in characteristic 2, Kraft [8, Remark 6] asked if Theorem 1 remains valid when $\operatorname{char}(K)=2$. In this paper we will show that the answer is "no" in general but "yes" under some additional assumptions on L / K.

2. Notational conventions

Suppose L / K is a field extension of degree n. Every $y \in L$ defines a K-linear transformation $L \rightarrow L$ given by $z \mapsto y z$. We will denote the characteristic polynomial of this linear transformation by $t^{n}-\sigma_{1}(y) t^{n-1}+\cdots+(-1)^{n} \sigma_{n}(y)$. It is common to write $\operatorname{tr}(y)$ in place of $\sigma_{1}(y)$. The minimal and the characteristic polynomial of y coincide if and only if y is a generator for L / K.

If L / K is separable, then $\sigma_{i}(y)=s_{i}\left(y_{1}, \ldots, y_{n}\right)$, where y_{1}, \ldots, y_{n} are the Galois conjugates of y and s_{i} is the i th elementary symmetric polynomial. Furthermore, if $[L: K]=6$, then condition (2) of Theorem 1 is equivalent to $\sigma_{1}(y)=\sigma_{3}(y)=0$.

We will be particularly interested in the "general" field extension L_{n} / K_{n} of degree n constructed as follows. Let F be a field and x_{1}, \ldots, x_{n} be independent variables over F. The symmetric group S_{n} acts on $F\left(x_{1}, \ldots, x_{n}\right)$ by permuting x_{1}, \ldots, x_{n}. Set $K_{n}:=F\left(x_{1}, \ldots, x_{n}\right)^{S_{n}}=F\left(a_{1}, \ldots, a_{n}\right)$, where $a_{i}=s_{i}\left(x_{1}, \ldots, x_{n}\right)$, and $L_{n}:=F\left(x_{1}, \ldots, x_{n}\right)^{S_{n-1}}=K_{n}\left(x_{1}\right)$, where S_{n-1} permutes x_{2}, \ldots, x_{n}. Note that by construction L_{n} / K_{n} is a separable extension of degree n.

We remark that since S_{n} has no subgroups strictly contained between S_{n-1} and S_{n}, there are no proper subextensions between K_{n} and L_{n}. Thus for $n \geqslant 2, y \in L_{n}$ generates L_{n} / K_{n} if and only if $y \notin K_{n}$.

3. Main results

Theorem 2. Let F be a field of characteristic $2, m \geq 1$ be an integer, and $n:=2 \cdot 3^{m}$. Then there is no $y \in L_{n}-K_{n}$ such that $\sigma_{1}(y)=$ $\sigma_{3}(y)=0$.

In particular, setting $m=1$, we see that Theorem 1 fails in characteristic 2 . We will deduce Theorem 2 from the following more general theorem.

Theorem 3. Let F be a field of characteristic $2, m \geqslant 1$ be an integer, p be an odd prime, and $n:=2 p^{m}$. Then there is no $y \in L_{n}-K_{n}$ such that $\operatorname{tr}(y)=\operatorname{tr}\left(y^{2}\right)=\cdots=\operatorname{tr}\left(y^{p}\right)=0$.

By Newton's formulas, $\operatorname{tr}\left(y^{3}\right)=\operatorname{tr}(y)^{3}-3 \operatorname{tr}(y) \sigma_{2}(y)+3 \sigma_{3}(y)$. Thus in characteristic $\neq 3$,

$$
\sigma_{1}(y)=\sigma_{3}(y)=0 \Longleftrightarrow \operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=0
$$

Moreover, in characteristic $2, \operatorname{tr}\left(z^{2}\right)=\operatorname{tr}(z)^{2}$ for any $z \in L_{n}$ and thus

$$
\operatorname{tr}(y)=\operatorname{tr}\left(y^{2}\right)=\cdots=\operatorname{tr}\left(y^{p}\right)=0 \Longleftrightarrow \operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=\cdots=\operatorname{tr}\left(y^{p-2}\right)=\operatorname{tr}\left(y^{p}\right)=0
$$

In particular, for $p=3$, Theorem 3 reduces to Theorem 2.

Theorem 4. Let L / K be a separable field extension of degree 6 . Assume char $(K)=2$ and one of the following conditions holds:
(a) there exists an intermediate extension $K \subset L^{\prime} \subset L$ such that $\left[L^{\prime}: K\right]=3$,
(b) K is a C_{1}-field.

Then there is a generator $y \in L$ for L / K satisfying $\sigma_{1}(y)=\sigma_{3}(y)=0$.

For background material on C_{1}-fields, see [13, Sections II.3].

4. Proof of Theorem 3: the overall strategy

It is easy to see that if Theorem 3 fails for a field F, it will also fail for the algebraic closure \bar{F}. We will thus assume throughout that F is algebraically closed.

Our proof of Theorem 3 will use the fixed point method, in the spirit of the arguments in [12, Section 6]. The idea is as follows. Assume the contrary: $\operatorname{tr}(y)=\cdots=\operatorname{tr}\left(y^{p}\right)=0$ for some $y \in L_{n}-K_{n}$. Based on this assumption, we will construct a projective F-variety \bar{X} with an S_{n}-action and an S_{n}-equivariant rational map $\varphi_{y}: \mathbb{A}^{n} \rightarrow \bar{X}$ defined over F. Here S_{n} acts on \mathbb{A}^{n} by permuting coordinates in the usual way. The Going Down Theorem of J. Kollár and E. Szabó [11, Proposition A.2] tells us that every Abelian subgroup $G \subset S_{n}$ of odd order has a fixed F-point in \bar{X}. On the other hand, we will construct an Abelian p-subgroup G of S_{n} with no fixed F-points in \bar{X}. This leads to a contradiction, showing that y cannot exist. We will now supply the details of the proof, following this outline.

5. Construction of \bar{X}, φ_{y}, and the Abelian subgroup $G \subset S_{n}$

Every $y \in L_{n}$ gives rise to an S_{n}-equivariant rational map (i.e., a rational covariant)

$$
\begin{aligned}
& f_{y}: \mathbb{A}^{n} \longrightarrow \mathbb{A}^{n} \\
& f_{y}(\alpha)=\left(h_{1}(y)(\alpha), \ldots, h_{n}(y)(\alpha)\right),
\end{aligned}
$$

where \mathbb{A}^{n} is the n-dimensional affine space defined over $F, \alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$, elements of $F\left(x_{1}, \ldots, x_{n}\right)$ are viewed as rational functions on \mathbb{A}^{n}, and h_{1}, \ldots, h_{n} are representatives of the left cosets of S_{n-1} in S_{n}, such that $h_{i}(1)=i$. Note that $h_{1}(y)=y, h_{2}(y), \ldots, h_{n}(y)$ are the conjugates of y in $F\left(x_{1}, \ldots, x_{n}\right)$. Since $y \in L_{n}:=F\left(x_{1}, \ldots, x_{n}\right)^{S_{n-1}}, h_{i}(y) \in F\left(x_{1}, \ldots, x_{n}\right)$ depends only on the coset $h_{i} S_{n-1}$ (i.e., only on i) and not on the particular choice of h_{i} in this coset.

Recall that we are assuming that $\operatorname{tr}(y)=\cdots=\operatorname{tr}\left(y^{p}\right)=0$. Thus the image of f_{y} is contained in the S_{n}-invariant subvariety $X \subset \mathbb{A}^{n}$ given by

$$
\begin{equation*}
a_{1}+\cdots+a_{n}=a_{1}^{2}+\cdots+a_{n}^{2}=\cdots=a_{1}^{p}+\cdots+a_{n}^{p}=0 \tag{6}
\end{equation*}
$$

Because n is even and we are working in characteristic 2 , if X contains $\alpha \in \mathbb{A}^{n}$ then X contains the linear span of α and $\alpha_{0}:=(1, \ldots, 1)$. Using this observation, we define an S_{n}-equivariant rational map $\varphi_{y}: \mathbb{A}^{n} \rightarrow \bar{X}$ as a composition $\varphi_{y}: \mathbb{A}^{n} \xrightarrow{f_{y}} X \xrightarrow{\pi} \bar{X}$, where π denotes the linear projection $\mathbb{A}^{n} \rightarrow \mathbb{P}\left(F^{n} / D\right), D:=\operatorname{Span}_{F}\left(\alpha_{0}\right)$ is a 1-dimensional S_{n}-invariant subspace in F^{n}, and $\bar{X} \subset \mathbb{P}\left(F^{n} / D\right)$ is the image of X under π. Points in the projective space $\mathbb{P}\left(F^{n} / D\right) \simeq \mathbb{P}^{n-2}$ correspond to 2-dimensional linear subspaces $L \subset F^{n}$ containing D. Points in \bar{X} correspond to 2-dimensional linear subspaces $L \subset F^{n}$, such that $D \subset L \subset X$. In particular, \bar{X} is closed in $\mathbb{P}\left(F^{n} / D\right)$. The rational map π associates with a point $\alpha \in \mathbb{A}^{n}$ the 2 -dimensional subspace spanned by α and α_{0}. Note that $\pi(\alpha)$ is well defined if and only if $\alpha \notin D$. Since we are assuming that $y \notin K_{n}$, the image of f_{y} is not contained in D. Thus the composition $\varphi_{y}=\pi \circ f_{y}: \mathbb{A}^{n} \rightarrow \bar{X}$ is a well-defined S_{n}-equivariant rational map.

Finally, the Abelian p-subgroup $G \subset S_{n}$ we will be working with is defined as follows. Recall that $n=2 p^{m}$. The regular action of $(\mathbb{Z} / p \mathbb{Z})^{m}$ on itself allows us to view $(\mathbb{Z} / p \mathbb{Z})^{m}$ as a subgroup of $S_{p^{m}}$. Here we denote the elements of $(\mathbb{Z} / p \mathbb{Z})^{m}$ by $g_{1}, \ldots, g_{p^{m}}$ and identify $\left\{1, \ldots, p^{m}\right\}$ with $\left\{g_{1}, \ldots, g_{p^{m}}\right\}$. We now set $G:=(\mathbb{Z} / p \mathbb{Z})^{m} \times(\mathbb{Z} / p \mathbb{Z})^{m} \hookrightarrow S_{p^{m}} \times S_{p^{m}} \hookrightarrow S_{n}$.

6. Conclusion of the proof of Theorem 3

It remains to show that G has no fixed F-points in \bar{X}. A fixed F-point for G in \bar{X} corresponds to a 2-dimensional G-invariant subspace L of F^{n} such that $D \subset L \subset X$. It will thus suffice to prove the following claim: no G-invariant 2-dimensional subspace of F^{n} is contained in X.

Since F is an algebraically closed field of characteristic 2 and G is an Abelian p-group, where $p \neq 2$, the G-representation on F^{n} is completely reducible. More precisely, F^{n} decomposes as $F_{\text {reg }}^{p^{m}}[1] \oplus F_{\text {reg }}^{p^{m}}[2]$, the direct sum of the regular representations of the two factors of $G=(\mathbb{Z} / p \mathbb{Z})^{m} \times(\mathbb{Z} / p \mathbb{Z})^{m}$. Each $F_{\text {reg }}^{p^{m}}[i]$ further decomposes as the direct sum of p^{m} one-dimensional invariant spaces

$$
V_{\chi}[i]:=\operatorname{Span}_{F}\left(\chi\left(g_{1}\right), \ldots, \chi\left(g_{p^{m}}\right)\right)
$$

where $\chi:(\mathbb{Z} / p \mathbb{Z})^{m} \rightarrow F^{*}$ is a multiplicative character. Thus $F^{n}=F_{\mathrm{reg}}^{p^{m}}[1] \oplus F_{\mathrm{reg}}^{p^{m}}[2]$ is the direct sum of the two-dimensional subspace

$$
\left(F^{n}\right)^{G}=V_{0}[1] \oplus V_{0}[2]=\{(\underbrace{a, \ldots, a}_{p^{m} \text { times }}, \underbrace{b, \ldots, b}_{p^{m} \text { times }}) \mid a, b \in F\},
$$

where 0 denotes the trivial character of $(\mathbb{Z} / p \mathbb{Z})^{m}$, and $2 p^{m}-2$ distinct non-trivial 1-dimensional representations $V_{\chi}[i]$, where $i=1,2$, and χ ranges over the non-trivial characters $(\mathbb{Z} / p \mathbb{Z})^{m} \rightarrow F^{*}$. Note that $\chi(g)^{p}=\chi\left(g^{p}\right)=1$ for any character $\chi:(\mathbb{Z} / p \mathbb{Z})^{m} \rightarrow F^{*}$, and thus

$$
\chi_{1}\left(g_{1}\right)^{p}+\cdots+\chi\left(g_{p^{m}}\right)^{p}=\underbrace{1+\cdots+1}_{p^{m} \text { times }}=p^{m}=1 \text { in } F
$$

(Recall that $\operatorname{char}(F)=2$ and p is odd.) Since one of the defining equations (6) for X is $x_{1}^{p}+\cdots+x_{n}^{p}=0$, we conclude that none of the $2 p^{m} G$-invariant 1-dimensional subspaces $V_{\chi}[i]$ is contained in X, and the claim follows.

7. Proof of Theorem 4

Let L_{0} be the 5-dimensional K-linear subspace of L given by $\operatorname{tr}(y)=0$. Let Y be the cubic threefold in $\mathbb{P}_{K}^{4}=\mathbb{P}\left(L_{0}\right)$ given by $\sigma_{3}(y)=0$ (or equivalently, $\operatorname{tr}\left(y^{3}\right)=0$). It is easy to see that Y is a cone, with vertex $1 \in L_{0}$, over a cubic surface \bar{Y} in $\mathbb{P}_{K}^{3}:=\mathbb{P}\left(L_{0} / K\right)$, defined over K. Note that \bar{Y} is a K-form of the variety \bar{X} we considered in the proof of Theorem 3. Applying the Jacobian criterion to the defining equations (6) of \bar{X} (with $p=3$ and $n=6$), we see that \bar{X} is a smooth surface, and hence, so is \bar{Y}. Either condition (a) or (b) implies that there exists a $y \in L-K$ such that $\operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=0$. Equivalently, $\bar{Y}(K) \neq \emptyset$. It remains to show that we can choose a generator $y \in L$ with $\operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=0$ or equivalently, that \bar{Y} has a rational point away from of the "diagonal" hyperplanes $x_{i}=x_{j}$ in $\mathbb{P}^{3}, 1 \leqslant i<j \leqslant 6$. (Note that the individual diagonal hyperplanes are defined over \bar{K}, but their union is defined over K.)

Suppose K is an infinite field. Since $\bar{Y}(K) \neq \emptyset, \bar{Y}$ is unirational; see [7]. Hence, K-points are dense in \bar{Y}, so that one (and in fact, infinitely many) of them lie away from the diagonal hyperplanes. Thus we may assume without loss of generality that $K=\mathbb{F}_{q}$ is a finite field of order q, where q is a power of 2 , and $L=\mathbb{F}_{q}$. (Note that in this case both conditions (a) and (b) are satisfied.) If $y \in L$ is not a generator, it will lie in $\mathbb{F}_{q^{2}}$ or $\mathbb{F}_{q^{3}}$. Clearly $\operatorname{tr}(y) \neq 0$ for any $y \in \mathbb{F}_{q^{2}}-\mathbb{F}_{q}$ and $\operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=0$ for any $y \in \mathbb{F}_{q^{3}}$. Thus a non-generator $y \in L$ satisfies $\operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=0$ if and only if $y \in \mathbb{F}_{q^{3}}$. In geometric language, elements of $\mathbb{F}_{q^{3}}$ are the K-points of a line in \bar{Y}, defined over $K=\mathbb{F}_{q}$. We will denote this line by Z. It suffices to show that \bar{Y} contains a K-point away from Z.

By [9, Corollary 27.1.1], $|\bar{Y}(K)| \geq q^{2}-7 q+1$. On the other hand, since $Z \simeq \mathbb{P}^{1}$ over $K,|Z(K)|=q+1$. Thus for $q>8, \bar{Y}$ has a K-point away from Z. In the remaining cases, where $q=2,4$ and 8 , we will exhibit an explicit irreducible polynomial over \mathbb{F}_{q} of the form (2):
$t^{6}+t+1$ is irreducible over \mathbb{F}_{2} see [1, p. 199],
$t^{6}+t^{2}+t+\alpha$ is irreducible, over \mathbb{F}_{4}, where $\alpha \in \mathbb{F}_{4}-F_{2}$, and
$t^{6}+t+\beta$ is irreducible over \mathbb{F}_{8}, for some $\beta \in \mathbb{F}_{8}-\mathbb{F}_{2}$; see [4, Table 5].

8. Concluding remarks

(1) Theorem 1 extends a 1861 result of C. Hermite [5], which asserts that every separable extensions L / K of degree 5 has a generator $y \in L$ with $\sigma_{1}(y)=\sigma_{3}(y)=0$. Surprisingly, Hermite's theorem is valid in any characteristic; see [8, Main Theorem (a)] or [2, Theorem 2.2].
(2) It is natural to ask if results analogous to Theorem 1 are true for separable field extensions L / K of degree n, other than 5 and 6 : does L / K always have a generator $y \in L$ with $\sigma_{1}(y)=\sigma_{3}(y)=0$? If n can be written in the form $3^{m_{1}}+3^{m_{2}}$ for some integers $m_{1}>m_{2} \geqslant 0$, then the answer is "no" in any characteristic (other than 3); see [10, Theorem 1.3(c)], [12, Theorem 1.8]. Some partial results for other n can be found in [2, §4].
(3) Using the Going Up Theorem for G-fixed points [11, Proposition A.4], our proof of Theorem 3 can be modified, to yield the following stronger statement. Suppose that K^{\prime} / K_{n} is a finite field extension of degree prime to p. Set $L^{\prime}:=L_{n} \otimes_{K_{n}} K^{\prime}$. Then there is no $y \in L^{\prime}-K^{\prime}$ such that $\operatorname{tr}(y)=\operatorname{tr}\left(y^{2}\right)=\cdots=\operatorname{tr}\left(y^{p}\right)=0$. In particular, under the assumptions of Theorem 2 , there is no $y \in L^{\prime}-K^{\prime}$ with $\sigma_{1}(y)=\sigma_{3}(y)=0$ for any finite field extension K^{\prime} / K_{n} of degree prime to 3 .
(4) Our argument shows that the G-action on \bar{X} is not versal in the sense of [14, Section I.5] or [3]. Otherwise \bar{X} would have a G-fixed point; see [3, Remark 2.7]. Moreover, in view of remark (3) above, the G-action on \bar{X} is not even p-versal. Since $G \subset A_{n} \subset S_{n}$, the same is true of the A_{n} - and S_{n}-actions on \bar{X}. This answers a question raised by J.-P. Serre in a letter to the author in 2005.
(5) Theorem 2 corrects an inaccuracy in the statement of Joubert's theorem in [10, Theorem 1.1], where the assumption that $\operatorname{char}(K) \neq 2$ was inadvertently left out.
(6) In the case where $K=\mathbb{F}_{q}$ is a finite field, Theorem 4 was communicated to the author by F . Voloch, along with an alternative proof, which is reproduced below with his permission.
"As in your comment after Theorem 3, it is enough to find y in $\mathbb{F}_{q^{6}}$, not in a smaller field, with $\operatorname{tr}(y)=\operatorname{tr}\left(y^{3}\right)=0$, where the trace is to \mathbb{F}_{q}. These conditions are equivalent to the existence of $x, z \in \mathbb{F}_{q^{6}}$ with $y=x^{q}-x, y^{3}=z^{q}-z$, so $z^{q}-z=\left(x^{q}-x\right)^{3}$. Letting $u=z+x^{3}$, we get an affine plane curve $u^{q}-u=x^{2 q+1}+x^{q+2}$ over $\mathbb{F}_{q^{6}}$ (here q is a power of 2). It is a general fact that any affine plane curve of the form $u^{q}-u=f(x)$, where $f(x)$ is a polynomial of degree d prime to q, has genus $(q-1)(d-1) / 2$, and its smooth projective model has exactly one point at infinity. In particular, our curve has genus $q(q-1)$. By the Weil bound, the number of points on the smooth projective model of this curve is at least $q^{6}+1-2 q(q-1) q^{3}$. There is one point at infinity and at most q^{5} points with $y=x^{q}-x \in \mathbb{F}_{q^{3}}$; these are the bad points. If $q>2$, our curve has a good point, one that gives rise to a generator of $\mathbb{F}_{q^{6}}$ over \mathbb{F}_{q}, because $q^{6}+1-2 q(q-1) q^{3}>1+q^{5}$ for any $q>2$. For $q=2$, I can exhibit an explicit 'Joubert polynomial', as in your formula (2). In fact, there are exactly two irreducible Joubert polynomials over $\mathbb{F}_{2}, t^{6}+t+1$ and $t^{6}+t^{4}+t^{2}+t+1$."

Acknowledgement

The author is grateful to M. Florence, H. Kraft, D. Lorenzini, J.-P. Serre, F. Voloch, and to the anonymous referee for helpful comments.

References

[1] R. Church, Tables of irreducible polynomials for the first four prime moduli, Ann. Math. (2) 36 (1935) 198-209, MR1503219.
[2] D.F. Coray, Cubic hypersurfaces and a result of Hermite, Duke Math. J. 54 (1987) 657-670, MR0899410.
[3] A. Duncan, Z. Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Algebr. Geom., in press, arXiv:1109.6093.
[4] D.H. Green, I.S. Taylor, Irreducible polynomials over composite Galois fields and their applications in coding techniques, Proc. IEEE Inst. Electr. Electron. Eng. 121 (1974) 935-939, MR0434611.
[5] C. Hermite, Sur l'invariant du dix-huitième ordre des formes du cinquième degré, J. Crelle 59 (1861) 304-305.
[6] P. Joubert, Sur l'equation du sixième degré, C. R. Acad. Sci. Paris 64 (1867) 1025-1029.
[7] J. Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002) 467-476, MR1956057.
[8] H. Kraft, A result of Hermite and equations of degree 5 and 6, J. Algebra 297 (2006) 234-253, MR2206857.
[9] Yu.I. Manin, Cubic forms. Algebra, Geometry, Arithmetic (translated from the Russian by M. Hazewinkel), second edition, North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986, MR0833513.
[10] Z. Reichstein, On a theorem of Hermite and Joubert, Can. J. Math. 51 (1999) 69-95, MR1692919.
[11] Z. Reichstein, B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, with an appendix by J. Kollár and E. Szabó. Can. J. Math. 52 (2000) 1018-1056, MR1782331.
[12] Z. Reichstein, B. Youssin, Conditions satisfied by characteristic polynomials in fields and division algebras, J. Pure Appl. Algebra 166 (2002) 165-189, MR1868544.
[13] J.-P. Serre, Galois Cohomology (translated from the French by Patrick Ion and revised by the author), Springer, Berlin, 1997, MR1466966.
[14] J.-P. Serre, Cohomological invariants, Witt invariants, and trace forms (notes by Skip Garibaldi), in: Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, USA, 2003, pp. 1-100, MR1999384.

[^0]: E-mail address: reichst@math.ubc.ca.
 URL: http://www.math.ubc.ca/~reichst.
 1 The author was partially supported by National Sciences and Engineering Research Council of Canada Discovery grant 250217-2012.
 http://dx.doi.org/10.1016/j.crma.2014.08.004
 1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

