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We consider an infinite strip perforated along a curve by small holes. In this perforated 
domain, we consider a scalar second-order elliptic differential operator subject to classical 
boundary conditions on the holes. Assuming that the perforation is non-periodic, we 
describe possible homogenized problems and prove the norm-resolvent convergence of the 
perturbed operator to a homogenized one. We also provide estimates for the rate of the 
convergence.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère une bande infinie avec une famille de petits trous placés le long d’une courbe. 
Dans ce domaine perforé, on étudie un opérateur scalaire elliptique du second ordre, avec 
des conditions aux limites classiques aux bords des trous. En supposant que l’emplacement 
des trous n’est pas périodique, on décrit les problèmes homogénéisés possibles et on 
démontre la convergence au sens de la norme de la résolvante des opérateurs perturbés 
vers les opérateurs homogénéisés. On obtient également des estimées pour le taux de 
convergence.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Homogenization theory is a rich field in modern mathematics, see, for instance, [1–11], and references therein. One of 
the perturbations treated in homogenization theory is the perforation by small holes along a given curve or manifold; see, 
for instance, [8], further works by these authors and references therein. The main result obtained for a general non-periodic 
perforation was the description of homogenized problems and the proof of convergence of perturbed solutions to the ho-
mogenized ones. Reformulating it in terms of operator theory, strong and/or weak convergence of perturbed operators to 
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Fig. 1. Perforated domain.

homogenized ones were proven. Recently results on norm-resolvent convergence for operators with fast periodically oscil-
lating coefficients appeared [2,6,7,9,11]. Moreover, the estimates for the rate of this convergence were established. These 
results were extended for operators with frequent alternation of boundary conditions [3,4] and with fast oscillating bound-
ary [5]. And in this note we present a similar study for operators with perforation along a curve. Our main results are 
the proof of norm-resolvent convergence in various operator norms and the estimates for the rate of convergence. This is 
done for all possible homogenized operators. We succeeded to get these results for a general non-periodic perforation under 
rather weak assumptions.

2. Formulation of problem and main results

Let x = (x1, x2) be the Cartesian coordinates in R2, Ω := {x : 0 < x2 < d} be an infinite strip, and γ be a curve in Ω sep-
arated from ∂Ω by a positive distance. We assume that γ is C2-smooth, has a bounded curvature and no self-intersections. 
Curve γ is either an infinite curve or finite and closed. By s we indicate the arc length of γ , s ∈ (−s∗, s∗), where s∗ is either 
finite or s∗ = +∞, and x = �(s) is the equation of γ .

Let Mε ⊆ Z be a set and sk ∈ (−s∗, s∗), k ∈ M
ε , be some points obeying sk < sk+1. By ωk , k ∈ M

ε , we indicate bounded 
domains in R2 with C2-boundaries. Denoting by ε a small positive parameter, we let θε := θε

0 ∪ θε
1 , θε

i := ⋃
k∈Mi

ωε
k , i = 0, 1, 

ωε
k := {x : ε−1η−1(ε)(x − yε

k ) ∈ ωk}, yε
k := �(skε), where Mε

i are subsets of Mε , Mε
0 ∩M

ε
1 = ∅, Mε

0 ∪M
ε
1 = M

ε , and η = η(ε)

is a certain function obeying 0 < η(ε) � 1.
Since γ has a bounded curvature and is either infinite or closed, it splits domain Ω into two disjoint subdomains. The 

upper/exterior one is denoted by Ω+ and the lower/interior one by Ω− . By ν0 we denote the normal to γ which is inward 
for Ω− . Let τ be the distance from γ to a point measured along ν0.

Set θε is the union of small holes ωε
k and we cut out them in Ω , introducing then a perforated domain Ωε := Ω \ θε , 

cf. Fig. 1. The main object of our study is the operator Hε in L2(Ω
ε) introduced by the differential expression

−
2∑

i, j=1

∂

∂xi
Aij

∂

∂x j
+

2∑
j=1

A j
∂

∂x j
− ∂

∂x j
A j + A0 (1)

in Ωε , subject to the Dirichlet condition on ∂Ω ∪ ∂θε
0 and to the Robin condition

(
∂

∂Nε
+ a

)
u = 0 on ∂θε

1 ,
∂

∂Nε
:=

2∑
i, j=1

Aijν
ε
i

∂

∂x j
+

2∑
j=1

A jν
ε
j ,

where νε = (νε
1 , νε

2 ) is the inward normal to ∂θε
1 , a = a(x) is a some function defined as |τ | < τ0, where τ0 is a small 

fixed positive number. It is assumed that a ∈ W 1∞({x : |τ | < τ0}). The coefficients of operator Hε are supposed to satisfy 
the conditions Aij, Ai ∈ W 1∞(Ω), A ji = A ji , i, j = 1, 2, A0 ∈ L∞(Ω), and Aij , A0 are real-valued. For coefficients Aij , we also 
assume the standard uniform ellipticity condition in Ω . Rigorously we introduce Hε as the self-adjoint operator associated 
with an appropriate symmetric sesquilinear form in L2(Ω

ε); this form can be easily written in view of the above definition 
of Hε and we do not dwell on it. In what follows, all the operators are introduced in the same way.

A physical motivation for the above operator comes from the waveguide theory. The domains like infinite two-
dimensional strips, multi-dimensional tubes or multi-dimensional layers appear in modeling semiconductors or waveguides. 
An elliptic operator is in fact a Hamiltonian describing the dynamics of a quantum particle living in the considered re-
gion. Here we deal with a general operator and as particular cases it involves a usual Schrödinger operator, a magnetic 
Schrödinger operator with an electric potential. By choosing appropriate coefficients Aij , we can also introduce various 
metrics in the space.

The Dirichlet boundary condition corresponds to the wall, and here the particle can not pass through. The Neumann 
condition can be interpreted as a kind of “window”, while the Robin condition corresponds to a “window” influenced by 
a magnetic field. The perforation by small holes with such boundary conditions should be regarded as micro-defects in 
our media. The presence of such defects is a very natural assumption, since there are always some inhomogeneities in the 
reality. And the aim of this paper is to study the influence of such micro-defects on the macroscopic properties of the 
model. Namely, we show how one can replace approximately the defects along the reference curve by some classical regime 
on this curve. We also estimate the error made under such replacement.
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Mathematical formulation for the aim of the present paper is to study the resolvent convergence of Hε as ε → +0. In 
order to do it, we make the following assumptions.

(A1) There exist fixed numbers 0 < R1 < R2, b > 1, L > 0, and points xk ∈ R
2, k ∈M

ε , such that

B R1

(
xk) ⊂ ωk ⊂ B R2(0), |∂ωk| � L for each k ∈M

ε,

BbR2ε

(
yε

k

) ∩ BbR2ε

(
yε

i

) = ∅ for each i,k ∈M
ε, i �= k, (2)

and for all sufficiently small ε.
(A2) For b and R2 in (A1) and k ∈ M

ε , there exists a generalized solution Xk : Bb∗ R2 (0) \ ωk �→ R
2, b∗ := (b + 1)/2, to the 

boundary value problem

div Xk = 0 in Bb∗ R2(0) \ ωk, Xk · ν = −1 on ∂ωk, Xk · ν = ϕk on ∂ Bb∗ R2(0), (3)

belonging to L∞(Bb∗ R2 (0) \ ωk) and bounded in the sense of this space uniformly in k ∈ M
ε . Here ν is the outward 

normal to ∂ Bb∗ R2 (0) and to ∂ωk , while ϕk is a some function in L∞(∂ Bb∗ R2 (0)) satisfying∫
∂ Bb∗ R2 (0)

ϕk ds = |∂ωk|. (4)

Let us introduce the first homogenized operator. We denote it by H0
D and it is the operator in L2(Ω) with the differential 

expression (1) subject to the Dirichlet condition on γ and ∂Ω .
By i we indicate the imaginary unit and the symbol ‖ · ‖X→Y stands for the norm of an operator acting from a Banach 

space X to a Banach space Y .
Now we are ready to formulate our first main result.

Theorem 2.1. Let

ε lnη(ε) → 0, ε → +0, (5)

suppose (A1), (A2), and

(A3) There exists a constant R3 > bR2 such that{
x : |τ | < εbR2

} ⊂
⋃

k∈Mε
0

B R3ε

(
yε

k

)
, ωε

k ⊂ B R3ε

(
yε

k

)
for all k ∈M

ε
0.

Then the estimate∥∥(
Hε − i

)−1 − (
H0

D − i
)−1∥∥

L2(Ω)→W 1
2 (Ωε)

� Cε1/2(∣∣lnη(ε)
∣∣1/2 + 1

)
holds true, where C is a positive constant independent of ε.

Given a function β ∈ W 1∞(γ ), we introduce the operator H0
β with the differential expression (1) subject to the boundary 

conditions

[u]γ = 0,

[
∂u

∂N0

]
γ

+ βu|γ = 0,
∂

∂N0
:=

2∑
i, j=1

Aijν
0
i

∂

∂x j
, (6)

where ν0 = (ν0
1 , ν0

2 ) and [u]γ = u|τ=+0 − u|τ=−0. Once β = 0, we shall simply write H0 instead of H0
0. In this case, there is 

no jump of the normal derivative in (6) and it means that the boundary condition on γ disappears.
Our next main result is as follows.

Theorem 2.2. Suppose (A1), (A2), let

1

ε lnη(ε)
→ −ρ, ε → +0, (7)

and set Mε
0 be non-empty. For b and R2 in (A1) and s ∈R we denote

αε(s) :=
{

π
bR2

, |s − εsk| < bR2ε, k ∈M
ε
0,

0, otherwise.

Assume also that
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(A4) there exists a function α ∈ W 1∞(γ ) and a function � = �(ε), �(ε) → +0, ε → +0, such that for all sufficiently small ε the 
estimate

∑
q∈Z

1

|q| + 1

∣∣∣∣∣
n+�∫
n

(
αε(s) − α(s)

)
e− iq

2π�
(s−n) ds

∣∣∣∣∣
2

� �2(ε) (8)

is valid, where n = −s∗ , � = 2s∗ , if γ is a finite curve, and n ∈ Z, � = 1, if γ is an infinite curve. In the latter case, estimate (8) is 
supposed to hold uniformly in n.

Denote

β := −α
(ρ + μ)

A11 A22 − A2
12

, β0 := −α
ρ

A11 A22 − A2
12

, μ(ε) := − 1

ε lnη(ε)
− ρ.

Then the estimates

∥∥(
Hε − i

)−1
f − (

H0
β − i

)−1
f
∥∥

L2(Ω)→L2(Ωε)
� C

(
ε1/2 + �(ε)

)
, (9)

∥∥(
Hε − i

)−1 − (
H0

β0
− i

)−1∥∥
L2(Ω)→L2(Ωε)

� C
(
ε1/2 + �(ε) + μ(ε)

)
(10)

hold true, where C is a positive constant independent of ε. There exists an explicit function W ε such that the estimate

∥∥(
Hε − i

)−1 − (
1 − W ε

)(
H0

β − i
)−1∥∥

L2(Ω)→W 1
2 (Ωε)

� C
(
ε1/2 + �(ε)

)
(11)

is valid, where C is a positive constant independent of ε. If ρ = 0, then the estimate

∥∥(
Hε − i

)−1 − (
H0

β0
− i

)−1∥∥
L2(Ω)→W 1

2 (Ωε)
� C

(
ε1/2 + μ1/2(ε)

)
(12)

holds true, where C is a positive constant independent of ε.

In the next two theorems we study the case when Mε
0 is empty and there are no holes with Dirichlet condition.

Theorem 2.3. Suppose (A1), (A2), let set Mε
0 be empty and either a ≡ 0 or η(ε) → 0, ε → +0. Then the estimates

∥∥(
Hε − i

)−1 − (
H0 − i

)−1∥∥
L2(Ω)→W 1

2 (Ωε)
� Cη(ε)

(∣∣lnη(ε)
∣∣ + 1

)
, a �≡ 0,

∥∥(
Hε − i

)−1
f − (

H0 − i
)−1

f
∥∥

L2(Ω)→W 1
2 (Ωε)

� Cε1/2η(ε)
(∣∣lnη(ε)

∣∣1/2 + 1
)
, a ≡ 0,

holds true, where C is a positive constant independent of ε.

Theorem 2.4. Suppose (A1), (A2), let η = const, set Mε
0 be empty, and for b and R2 in (A1) we denote

αε(s) :=
{ |∂ωk|

2bR2
, |s − εsk| < bR2εη, k ∈M

ε,

0, otherwise.

Assume that

(A5) there exists a function α in W 1∞(γ ) and a function � = �(ε), �(ε) → +0, ε → +0, such that for all sufficiently small ε the 
estimates (8) are valid.

then the estimate

∥∥(
Hε − i

)−1 − (
H0

αa − i
)−1∥∥

L2(Ω)→W 1
2 (Ωε)

� C
(
ε1/2 + �1/2(ε)

)
holds true, where C is a positive constant independent of ε.

Let us discuss briefly the main results. We first dwell on the assumptions. Set Mε can be arbitrary and even finite. It 
means that there is a lot of freedom in distributing the holes along the curve. For instance, the distances between them 
can be small, finite or even large, once we choose Mε in an appropriate way. Then the distribution of holes with different 
types of boundary conditions is also arbitrary. The main assumptions are (A1), (A2). The former is very natural and it just 
says that all the holes are approximately of the same linear size ∼ εη, while the minimal distances between the holes is 
∼ ε. The second assumption is more gentle. It is clear that for each fixed hole boundary value problem (3) is solvable, since 
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function ϕk is not fixed and the only condition (4) for this function is in fact the solvability condition of (3). What we in 
fact assume here is that solutions for (3) are bounded in L∞(Bb∗R2(0) \ ωk) uniformly in k.

Theorem 2.1 describes the case when the homogenization leads to the Dirichlet condition on γ . Here we need (5)
providing the relation between the sizes of the holes and the distances between them and also assumption (A3). The latter 
means that there should be infinitely many holes with Dirichlet condition and they should be distributed rather uniformly 
along the whole curve.

Theorem 2.2 deals with the case when the sizes of the holes with Dirichlet condition are exponentially small, cf. (7). 
Function αε describes the distribution of the holes with Dirichlet condition, and additional assumption (A4) says that this 

function converges in the sense of (8). We observe that the left-hand side in (8) is the norm in W
1
2

2 (n, n + �). Under the 
above assumptions, the homogenized operator involves condition (6), which can be interpreted as a delta-interaction. We 
also note that condition (A4) is satisfied for periodic distribution of the holes with Dirichlet condition as well as for various 
non-periodic cases. For instance, one can take periodically distributed holes and change arbitrarily some of them so that the 
amount of deformed holes is relatively small with respect to unchanged ones. Another example is a perforation by a fixed 
number of holes. We stress that in this theorem there is no special assumptions for the holes with Robin condition, except 
(A1), (A2). We also observe that in this theorem there are several estimates stating the uniform resolvent convergence; they 
are formulated either for different operator norm or for different operators that can serve as a homogenized one. Namely, 
the worst estimate (10) is formulated for the norm ‖ · ‖L2(Ω)→L2(Ωε) and the right-hand side depends on ε, � , and μ. Once 
we replace β0 by β (the latter depends on μ), we can get rid of μ in the estimate. And by employing a special corrector 
W ε we can improve the operator norm to ‖ · ‖L2(Ω)→W 1

2 (Ωε) . And once ρ vanishes, there is a special estimate (12).

In the other theorems, it is assumed that there are no holes with Dirichlet condition. In this case the homogenized 
operator either has no condition on γ (Theorem 2.3) or involves boundary condition (6) (Theorem 2.4). In the latter case, 
we need additional assumption (A5), which is the restriction for the distribution of the perimeters and the positions of the 
holes.
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