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We propose an analysis for the stabilized finite element methods proposed in Burman 
(2013) [2] valid in the case of ill-posed problems for which only weak continuous 
dependence can be assumed. A priori and a posteriori error estimates are obtained without 
assuming coercivity or inf–sup stability of the continuous problem.
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r é s u m é

Dans cette note, nous proposons une nouvelle analyse pour les méthodes d’éléments finis 
stabilisées introduites dans Burman (2013) [2], appliquées a des problèmes mal posés avec 
des propriétés de dépendance continue faibles. Nous obtenons des estimations a priori 
et a posteriori sans supposer ni coercitivité ni stabilité inf–sup de la forme bilinéaire du 
problème continu.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in the numerical approximation of ill-posed problems. The abstract theory will be illustrated by the 
following linear elliptic Cauchy problem. Let Ω be a convex polygonal (polyhedral) domain in Rd , d = 2, 3, and consider the 
equation

{ −�u = f , in Ω

u = 0 and ∇u · n = ψ on Γ
(1)

where Γ ⊂ ∂Ω denotes a simply connected part of the boundary and f ∈ L2(Ω), ψ ∈ H
1
2 (Γ ). Introducing the spaces 

V := {v ∈ H1(Ω) : v|Γ = 0} and W := {v ∈ H1(Ω) : v|Γ ′ = 0}, where Γ ′ := ∂Ω \ Γ and the forms a(u, w) := ∫
Ω

∇u · ∇w dx, 
and l(w) := ∫

Ω
f w dx + ∫

Γ
ψ w ds Eq. (1) may be cast in the abstract weak formulation, find u ∈ V such that
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a(u, w) = l(w) ∀w ∈ W . (2)

It is well known that the Cauchy problem (1) is not well-posed in the sense of Hadamard. If l(w) is such that a sufficiently 
smooth, exact solution exists, conditional continuous dependence estimates can nevertheless be obtained [1].

The objective of the present paper is to study numerical methods for ill-posed problems of the form (2), where a :
V × W �→ R and l : W �→ R are a bilinear and a linear form. Assume that the linear form l(w) is such that the problem (2)
admits a unique solution u ∈ V . Define the following dual norm on l, ‖l‖W ′ := sup w∈W‖w‖W =1

|l(w)|. Observe that we do not 

assume that (2) admits a unique solution for all l(w) such that ‖l‖W ′ < ∞. The stability property we assume to be satisfied by 
(2) is the following continuous dependence.

Assumption: continuous dependence on data. Consider the functional j : V �→R. Let Ξ : R+ �→ R
+ be a continuous, mono-

tone increasing function with limx→0+ Ξ(x) = 0. Let ε > 0.

Assume that there holds ‖l‖W ′ ≤ ε in (2) then, for ε sufficiently small,
∣∣ j(u)

∣∣ ≤ Ξ(ε). (3)

For the example of the Cauchy problem (1), it is known [1, Theorems 1.7 and 1.9] that if (1) admits a unique solution 
u ∈ H1(Ω), a continuous dependence of the form (3), with 0 < ε < 1, holds for

j(u) := ‖u‖L2(ω),ω ⊂ Ω : dist(ω, ∂Ω) =: dω,∂Ω > 0 with Ξ(x) := Cuς xς , Cuς > 0, ς := ς(dω,∂Ω) ∈ (0,1) (4)

and for

j(u) := ‖u‖L2(Ω) with Ξ(x) := Cu
(∣∣log(x)

∣∣ + C
)−ς

with Cu, C > 0, ς ∈ (0,1). (5)

Note that to derive these results, l(·) is first associated with its Riesz representant in W (cf. [1, Eq. (1.31)] and discussion). 
The constant Cuς in (4) grows monotonically in ‖u‖L2(Ω) and Cu in (5) grows monotonically in ‖u‖H1(Ω) .

2. Finite element discretization

Let Kh be a shape regular, conforming, subdivision of Ω into non-overlapping triangles κ . The family of meshes {Kh}h
is indexed by the mesh parameter h := max(diam(κ)). Let FI be the set of interior faces in Kh and FΓ , FΓ ′ the set of 
element faces of Kh whose interior intersects Γ and Γ ′ respectively. We assume that the mesh matches the boundary of Γ
so that FΓ ∩FΓ ′ = ∅. Let X1

h denote the standard finite element space of continuous, affine functions. Define Vh := V ∩ X1
h

and Wh := W ∩ X1
h . We may then write the finite element method: find (uh, zh) ∈ Vh × Wh such that,

a(uh, wh) − sW (zh, wh) = l(wh)

a(vh, zh) + sV (uh, vh) = sV (u, vh)

}
for all (vh, wh) ∈ Vh × Wh. (6)

A possible choice of stabilization operators for the problem (1) are

sV (uh, vh) :=
∑

F∈FI ∪FΓ

∫
F

hF [∂nuh][∂n vh]ds, with hF := diam(F ) (7)

and

sW (zh, wh) := a(zh, wh) or sW (zh, wh) :=
∑

F∈FI ∪FΓ ′

∫
F

hF [∂nzh][∂n wh]ds (8)

where [∂nuh] denotes the jump of ∇uh · nF for F ∈ FI and when F ∈ FΓ or F ∈ FΓ ′ define [∂nuh]|F := ∇uh · n∂Ω . Unique 
existence of (uh, zh) solution to (6)–(8) follows using the arguments of [2, Proposition 3.3]. By inspection we have that the 
system (6) is consistent with (2) for zh = 0. Taking the difference of (6) and the relation (2), with w = wh , we obtain the 
Galerkin orthogonality,

a(uh − u, wh) − sW (zh, wh) + a(vh, zh) + sV (uh − u, vh) = 0 for all (vh, wh) ∈ Vh × Wh. (9)

3. Hypotheses on forms and interpolants

Consider the general, positive semi-definite, symmetric stabilization operators, sV : Vh × Vh �→ R, sW : Wh × Wh �→R. We 
assume that sV (u, vh), with u the solution of (2), is explicitly known; it may depend on data from l(w) or measurements 
of u. Assume that both sV and sW define semi-norms on Hs(Ω) + Vh and Hs(Ω) + Wh respectively, for some s ≥ 1,

|v + vh|sZ := sZ (v + vh, v + vh)
1
2 , ∀v ∈ Hs(Ω), vh ∈ Zh, with Z = V , W . (10)

Then assume that there exist interpolation operators iV : V �→ Vh and iW : W �→ Wh and norms ‖ · ‖∗,V and ‖ · ‖∗,W defined 
on V and W respectively, such that the form a(u, v) satisfies the continuities
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a(v − iV v, wh) ≤ ‖v − iV v‖∗,V |wh|sW , ∀v ∈ V , wh ∈ Wh (11)

and for u solution of (2),

a(u − uh, w − iW w) ≤ δl(h)‖w‖W + ‖w − iW w‖∗,W |u − uh|sV , ∀w ∈ W . (12)

In practice, δl(h) only depends on the properties of the interpolant iW and the data of the problem (and satisfies 
limh→0 δl(h) = 0 provided the data are unperturbed). We also assume that the interpolants have the following approxi-
mation and stability properties. For sufficiently smooth v ∈ V there holds, for t > 0:

|v − iV v|sV + ‖v − iV v‖∗,V ≤ C V (v)ht . (13)

The factor CV (v) > 0 will typically depend on some Sobolev norm of v . For iW we assume that for some CW > 0 there 
holds

‖w − iW w‖∗,W + |iW w|sW ≤ CW ‖w‖W , ∀w ∈ W . (14)

3.1. Satisfaction of hypothesis for the formulation (6)–(8)

Let iV and iW be defined by Scott–Zhang interpolation operators preserving the Dirichlet boundary conditions. The 
consistency of sV (·, ·) holds for solutions u ∈ H2(Ω). Consider first the form of sW (·, ·) in the left definition of (8). Define 
‖v‖∗,V := ‖∇v‖L2(Ω) and ‖w‖∗,W := ‖h−1 w‖L2(Ω) + (

∑
F∈FI ∪FΓ

h−1‖w‖2
L2(F )

)1/2. Using local trace inequalities and the 
stability and approximation properties of the Scott–Zhang interpolant, we deduce that the inequalities (13)–(14) hold with 
t = 1 and CV (v) := C‖v‖H2(Ω) . The inequality (11) follows by the Cauchy–Schwarz inequality. To prove (12), with δ(h) =
CW h‖ f ‖L2(Ω) , integrate by parts in a(u − uh, w − iW w), and use Eq. (1), to obtain:

a(u − uh, w − iW w) = ( f , w − iW w)L2(Ω) +
∑

F∈FI ∪FΓ

([
∂n(u − uh)

]
, w − iW w

)
L2(F )

.

The bound (12) then follows by the Cauchy–Schwarz inequality, the definitions of sV (·, ·) and ‖ · ‖∗,W and the ap-
proximation (14). For the variant where sW (wh, zh) := ∑

F∈FI ∪FΓ ′
∫

F h[∂nzh][∂n wh] ds let ‖w‖∗,V := ‖h−1 w‖L2(Ω) +
(
∑

F∈FI ∪FΓ ′ h−1‖w‖2
L2(F )

)1/2 and prove inequality (11) similarly as (12) above, but integrating by parts the other way. 
This latter method has enhanced adjoint consistency.

4. Error analysis

We will now prove an error analysis using only the continuous dependence (3). First we prove that assuming smoothness 
of the exact solution the error converges with the rate ht in the stabilization semi-norms defined in Eq. (10). Then we 
show that the computational error satisfies a perturbation equation of the form (2), and that the right-hand side of the 
perturbation equation can be upper bounded by the stabilization semi-norm. Our error bounds are then a consequence of 
the assumption (3).

Lemma 4.1. Let u be the solution of (2) and (uh, zh) the solution of the formulation (6) for which (10), (11) and (13) hold. Then

|u − uh|sV + |zh|sW ≤ (
1 + √

2
)
C V (u)ht .

Proof. Let ξh := iV u − uh and write |ξh|2sV
+|zh|2sW

= sV (ξh, ξh) +a(ξh, zh) −a(ξh, zh) + sW (zh, zh). Using Eq. (9) we then have 
|ξh|2sV

+|zh|2sW
= sV (iV u − u, ξh) +a(iV u − u, zh). Applying the Cauchy–Schwarz inequality in the first term of the right-hand 

side and the continuity (11) in the second, followed by (13), we may deduce:

|ξh|2sV
+ |zh|2sW

≤ |iV u − u|sV |ξh|sV + ‖iV u − u‖∗,V |zh|sW ≤ C V (u)ht(|ξh|2sV
+ |zh|2sW

) 1
2 .

The claim follows by the triangle inequality |u − uh|sV ≤ |u − iV u|sV + |ξh|sV . �
Theorem 4.2. Let u be the solution of (2) and (uh, zh) the solution of the formulation (6) for which (10)–(13) hold. Assume that the 
problem (2) has the stability property (3). Then

∣∣ j(u − uh)
∣∣ ≤ Ξ

(
η(uh, zh)

)
(15)

where the a posteriori quantity η(uh, zh) is defined by η(uh, zh) := δl(h) + CW (|u − uh|sV + |zh|sW ). For sufficiently smooth u there 
holds:

η(uh, zh) ≤ δl(h) + (
1 + √

2
)
CW C V (u)ht . (16)
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Fig. 1. Left: convergence of global L2-errors (dashed) and stabilization semi-norms (full). Middle: convergence of local L2-errors. Right: study of error under 
variation of the parameter γV = γW . (P1 approximation marked with squares, P2 with circles.)

Proof. Let e := u − uh ∈ V . By the Galerkin orthogonality, there holds for all w ∈ W :

a(e, w) = a(e, w − iW w) − sW (zh, iW w) = l(w − iW w) − a(uh, w − iW w) − sW (zh, iW w)

and we identify r ∈ W ′ such that ∀w ∈ W ,

(r, w)W ′,W = l(w − iW w) − a(uh, w − iW w) − sW (zh, iW w). (17)

We have shown that e satisfies equation (2) with right-hand side (r, w)W ′,W . Now apply the continuity (12), Cauchy–
Schwarz inequality and the stability (14) in the right-hand side of (17), leading to:

∣∣(r, w)W ′,W
∣∣ = ∣∣a(e, w − iW w) − sW (zh, iW w)

∣∣ ≤ (
δl(h) + CW |u − uh|sV + CW |zh|sW

)‖w‖W .

We conclude that ‖r‖W ′ ≤ δl(h) + CW (|u − uh|sV + |zh|sW ) and the claim (15) follows by assumption (3). The upper bound 
of (16) is a consequence of Lemma 4.1. �
Corollary 4.3. Let u ∈ H2(Ω) be the solution of (1) and uh, zh the solution of (6)–(8). Then the conclusions of Lemma 4.1 and The-
orem 4.2 hold for u − uh, zh with t = 1 and j(·), Ξ(·) given by (4) or (5). Moreover Cuς and Cu of (4) and (5) are independent 
of h.

Proof. In Section 3.1 above we showed that the formulation (6)–(8) satisfies (10)–(13), and we conclude that Lemma 4.1
and Theorem 4.2 hold. For Cuς and Cu of (4) and (5) to be bounded uniformly in h, ‖u − uh‖H1(Ω) must be bounded by 
some constant independent of h. To this end, one may prove a discrete Poincaré inequality ‖∇uh‖L2(Ω) ≤ C P h−1|uh|sV . Using 
this result together with Lemma 4.1, we deduce that ‖∇uh‖L2(Ω) ≤ C‖u‖H2(Ω) , which proves the claim. �
5. Numerical example

To illustrate the theory we recall a numerical example from [2]. We solve the Cauchy problem (1) on the unit square 
Ω ∈ (0, 1) × (0, 1) with exact solution u(x, y) = 30x(1 − x)y(1 − y), ψ = ∇u · n∂Ω and Γ := {x ∈ (0, 1), y = 0} ∪ {x = 1, y ∈
(0, 1)}. We compute piecewise affine approximations on a sequence of unstructured meshes using the method (6) and the 
stabilizations (7) and (8)2 (γV = γW = 0.01). We also make a similar series of computations using piecewise quadratic 
elements and an added penalty term on the jump of the elementwise Laplacian following [2] (γV = γW = 0.001). The 
results are reported in Fig. 1. The convergence of the global L2-error and the stabilization semi-norm is given in the left plot, 
compared with theoretically motivated logarithmic bounds. The local L2(ω) errors in the subdomain ω = (0.5, 1) × (0, 0.5)

are presented in the middle plot and we observe that they have O (hk) convergence where k denotes the polynomial order. 
Finally we report a study of the error on a fixed mesh with 64 × 64 elements under variation of the penalty parameter in 
the right plot.

6. Conclusion and further perspectives

Herein we have proposed a framework for the analysis of the stabilized methods introduced in [2] when applied to ill-
posed problems. The upshot is that error estimates can be obtained using only continuous dependence properties, without 
relying on a well-posedness theory of the continuous problem. For numerical examples, we refer the reader to [2]. Impor-
tant extensions of the results presented herein are the inclusion of perturbed data and the exploration of the consequences 
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of adjoint consistency. The latter may allow for improved estimates, when the error is measured by linear functionals that 
are in the range of the adjoint problem.
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