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The notion of active sum provides an analogue for groups of what the direct sum is for 
abelian groups. One natural question then is which groups are the active sum of a family of 
cyclic subgroups. Many groups have been found to give a positive answer to this question, 
while the case of finite metacyclic groups remained unknown. In this note we show that 
every finite metacyclic group can be recovered as the active sum of a discrete family of 
cyclic subgroups.
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r é s u m é

La notion de somme active fournit un analogue pour les groupes de ce qu’est la somme 
directe pour les groupes abéliens. Une question naturelle est alors de déterminer quels 
groupes sont la somme active d’une famille de sous-groupes cycliques. De nombreux 
groupes possèdent cette propriété, mais la question demeurait ouverte pour les groupes 
finis métacycliques. Dans cette note, nous montrons que tout groupe fini métacyclique 
s’obtient comme la somme active d’une famille discrète de sous-groupes cycliques.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The active sum of groups has its origin in a paper of Tomás [10], where one of the main motivations was to find an 
analogue of the direct sum of groups, but this time taking into account the mutual actions of the groups in question. For 
an arbitrary group G , the active sum of a generating family of subgroups, closed under conjugation and with partial order 
compatible with inclusion, is a group S which has G as an homomorphic image and that coincides with the direct sum of 
the family in case of G being abelian. Since every finite abelian group is the direct sum of cyclic subgroups, it is natural 
to ask whether every finite group is the active sum of cyclic subgroups. In [2] it is shown that free groups, semidirect 
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products of two finite cyclic groups, most of the groups of the form SLn(q), and Coxeter groups are all active sums of 
discrete families of cyclic subgroups. On the other hand, in [3] we gave examples of finite groups that are not active sums 
of cyclic subgroups: the alternating groups An for n ≥ 4, many of the groups of the form PSLn(q), and others. However, at 
the time we were unable to determine whether every finite metacyclic group is the active sum of a discrete family of cyclic 
subgroups, a question we settle in this paper.

Dealing with the definition of active sum in concrete examples is not an easy task. Fortunately, one of its main properties 
is that for any group G and any family F satisfying the conditions mentioned before, the active sum S of F satisfies 
S/Z(S) ∼= G/Z(G) (Z(S) and Z(G) denote the center of S and G , respectively). This allows us to obtain conditions of 
homological nature, namely the surjectivity of Ganea’s homomorphism, that helps us decide whether S is isomorphic to G . 
As we will see in Section 3, in case of G being finite metacyclic, this reduces the problem to verify that the family proposed 
is regular and independent. The notions of regularity and independence will be recalled in the next section, while Ganea’s 
homomorphism will be described in Section 3.

A group G is metacyclic if it has a normal cyclic subgroup K such that G/K is also cyclic. For a finite metacyclic group G , 
Hyo-Seob Sim [9] introduces the Standard Hall decomposition of a given metacyclic factorization, splitting G as a semidirect 
product of two subgroups N and H of relatively prime order. The subgroup N turns out to be a semidirect product of two 
cyclic groups and H is nilpotent. By doing this, all the difficulties that arise when G is not a semidirect product of two 
cyclic groups are gathered in the nilpotent group H . This is precisely what we will use to show that every finite metacyclic 
group is an active sum of cyclic subgroups. As we mentioned above, we know this to be true for the semidirect product of 
two cyclic groups; we will prove it for finite metacyclic p-groups, and we will finally use the Standard Hall decomposition 
to prove it for any finite metacyclic group.

The active sum shares some nice properties with other similar constructions, such as the cellular cover of a group (see 
for example, [1] or [4]). In fact, it seems quite plausible that these two constructions are closely related. For example, 
if the family contains only cyclic groups of order n, one can show that the active sum is Z/nZ-cellular, in the sense of 
Definition 2.2 of [1]. As a consequence, we have that Coxeter groups are Z/2Z-cellular, since any Coxeter group is the active 
sum of a family of groups of order 2. For more information about the active sum, and its relation to other areas, see the 
introduction to [2].

2. Preliminaries

2.1. Active sum

We take as our definition of active sum the one given in [2]. Since in this paper we will only consider discrete families of 
distinct subgroups, for the convenience of the reader we briefly describe the results we need in this particular setting. Thus 
we take a (finite) group G , and a family F of distinct subgroups of G that is generating (〈⋃F∈F F 〉 = G) and closed under 
conjugation (∀F ∈ F , g ∈ G , F g = g−1 F g ∈ F ). The active sum S of F is the free product of the elements of F divided by 
the normal subgroup generated by the elements of the form h−1 · g · h · (gh)−1, with h ∈ F1, g ∈ F2, F1, F2 ∈ F (and thus, 
gh ∈ F h

2 = h−1 F2h ∈ F ). We obtain a canonical homomorphism ϕ : S → G , surjective since F is generating. By Lemma 1.5 
of [2], ϕ−1(Z(G)) = Z(S), so we obtain a central extension:

H2(S) H2(G) kerϕ H1(S) H1(G) 1
ϕ∗ ϕ∗ .

From Theorem 1.12 in [2] we have that ϕ∗ : H1(S) → H1(G) is injective (and thus an iso) iff F is regular and independent, 
notions we will recall below. On the other hand, we will see in Section 3 that when G is a metacyclic group, the arrow 
ϕ∗ : H2(S) → H2(G) is always surjective. As a consequence, in the particular case of G being metacyclic, ϕ : S → G is an 
isomorphism iff F is regular and independent.

The notions of regularity and independence are explained in more detail in Section 1.2 of [2]. For regularity we recall 
Lemma 1.9 of this reference:

Lemma 2.1. Assume that the family F is discrete. The family F is regular iff [F , NG(F )] = F ∩ G ′ for every F ∈F , where NG(F ) is the 
normalizer of F in G.

As for independence, we consider first a complete set of representatives T of conjugacy classes of elements of F . We 
call T a transversal of F . According to Definition 1.11 of [2], F is independent iff the canonical homomorphism

⊕
F∈T

F/
(

F ∩ G ′) → G/G ′

is an isomorphism.
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2.2. Metacyclic groups

A group G is called metacyclic if it has a normal cyclic subgroup K with cyclic quotient. By taking generators a of K and 
bK of G/K , G has a presentation of the form

G = 〈
a,b

∣∣am = 1,bs = at ,b−1ab = ar 〉 (1)

where the integers m, s, t and r satisfy rs ≡ 1 (mod m) and m|t(r − 1). Proposition 1 of Chapter 7 in Johnson [7] shows that 
a group is metacyclic with cyclic subgroup of order m and quotient group of order s if and only if it has a presentation of 
this form. If we let L = 〈b〉, then G can be written as G = LK . This decomposition is called a metacyclic factorization of G . If 
L ∩ K = 1, then the metacyclic factorization is called split.

In the rest of the section we will fix m, s, t and r as the integers of the above presentation, and G = LK as above will be 
a fixed metacyclic factorization of G .

Lemma 2.2. Let s′ be the order of r in Z∗
m, and k = m

(r−1,m)
. The center of G is the group Z(G) = 〈ak, bs′ 〉 and the Schur multiplier of 

G/Z(G) is cyclic of order q/k where q = (r − 1, k)( rs′ −1
r−1 , k).

Proof. Since b−s′abs′ = ars′ = a, it is clear that bs′ ∈ Z(G). Furthermore, if a� ∈ Z(G), then a� = b−1a�b = a�r . Therefore 
m|�(r − 1). The smallest possible positive value for � is k = m

(r−1,m)
. Thus 〈ak, bs′ 〉 ⊆ Z(G).

On the other hand, if aubv ∈ Z(G), then b = (aubv )b(aubv)−1 = auba−u , therefore k|u. Similarly aubv = a(aubv)a−1 =
au(abva−1), thus bv = abva−1. This means that s′|v .

Since any element of the form ap = bq is in Z(G), it is easy to see that G/Z(G) is a semidirect product, therefore it has 
the following presentation:

G/Z(G) � 〈
c,d

∣∣ck = 1,ds′ = 1,d−1cd = cr 〉.
By Theorem 2.11.3 in [8], the Schur multiplier of G/Z(G) is cyclic of order (r−1,k)( rs′ −1

r−1 ,k)

k . �
Remark 2.3. It is easy to see that G ′ = 〈ar−1〉, so we also have G ′ ∩ Z(G) = 〈ar−1〉 ∩〈ak, bs′ 〉 = 〈a m

(r−1,k) 〉. Therefore |G ′ ∩ Z(G)| =
(r − 1, k).

3. Ganea’s map, regularity and independence

Recall from Section 2.5 of [2] the exact sequence given by Ganea [5] for G and Z(G):

H1(G) ⊗ Z(G) → H2(G) → H2
(
G/Z(G)

) → Z(G) → H1(G) → H1
(
G/Z(G)

) → 0.

Observe that ker(Z(G) → H1(G)) = Z(G) ∩ G ′ . Therefore, we obtain the following exact sequence:

H1(G) ⊗ Z(G) → H2(G) → H2
(
G/Z(G)

)
� Z(G) ∩ G ′.

Thus, the homomorphism H1(G) ⊗ Z(G) → H2(G) is epi if and only if the epimorphism H2(G/Z(G)) → Z(G) ∩ G ′ is also 
mono. This happens if and only if |H2(G/Z(G))| ≤ |G ′ ∩ Z(G)|. In case G is a finite metacyclic group, considering the 
parameters given in the presentation (1), it follows from Lemma 2.2 and Remark 2.3 that this happens if and only if

(
rs′ − 1

r − 1
,k

)
≤ k,

but this is clear. We have shown the following.

Proposition 3.1. If G is a finite metacyclic group, then Ganea’s homomorphism H1(G) ⊗ Z(G) → H2(G) is an epimorphism.

Theorem 2.16 in [2] says that if Ganea’s homomorphism is surjective, then to prove that the active sum of a family F is 
isomorphic to G , it is enough to show that F is regular and independent. Thus we obtain:

Corollary 3.2. If G is a finite metacyclic group, then every generating regular and independent family of subgroups of G has active sum 
isomorphic to G.

Our task now is to show that every finite metacyclic group has a regular and independent family composed solely of 
cyclic subgroups.
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Remark 3.3. We may assume that G/G ′ is not cyclic since, if it is cyclic, generated by the class of an element b ∈ G , then 
it is easy to prove that G is the semidirect product of G ′ and 〈b〉, and by Example 2.2.3 in [2], we know that such a family 
exists in this case.

For the rest of the section, we will assume that G is a metacyclic group with a presentation (1).

Lemma 3.4. The family consisting of the groups 〈a〉, 〈b〉 and their conjugates is generating and independent for G if and only if 
(m, r − 1)|t.

Proof. The quotient group G/G ′ is an abelian, non-cyclic metacyclic group, which means it is the direct sum of two cyclic 
groups. To ask for the family to be independent amounts to ask for

G

G ′ = 〈a〉
G ′ ⊕ 〈b〉G ′

G ′ .

Now, the order of G/G ′ is (m, r − 1)s, while the order of 〈a〉/G ′ is (m, r − 1), so the above equality holds if and only if 
〈b〉/(〈b〉 ∩ G ′) has order s. Since s is the smallest integer such that bs ∈ 〈a〉, this happens iff 〈b〉 ∩ G ′ = 〈bs〉, which happens 
iff (m, r − 1)|t . �
Theorem 3.5. If (m, r − 1)|t, then the metacyclic group G is the active sum of the family consisting of 〈a〉, 〈b〉 and its conjugates.

Proof. By the two previous results we only need to show that the family is regular.
Observe that 〈a〉 is always regular since G ′ ⊆ 〈a〉. We would like to show that 〈b〉 is regular as well. That is, we need to 

see that G ′ ∩ 〈b〉 ⊆ [〈b〉, NG(〈b〉)]. We have G ′ ∩ 〈b〉 = 〈bs〉. Therefore, we need to show that bs ∈ [〈b〉, NG(〈b〉)].
Using the relation ab = ar we deduce ba−1 = bar−1. Suppose that t = q(m, r − 1) and that (m, r − 1) = αm + β(r − 1). If 

we let z = −qβ then bat = ba−(r−1)z , which by the previous equality gives baz = bat = bs+1. We thus have az ∈ NG(〈b〉) and 
bs = [b, az] ∈ [〈b〉, NG(〈b〉)], and conclude that 〈b〉 is regular. �
4. Metacyclic groups as active sums of cyclic subgroups

We apply the previous theorem to the case of metacyclic p-groups. To do this we use the presentation given on The-
orem 3.5 of Sim [9] for the case p odd, and the presentations of Theorem 4.5 in Hempel [6] for the case p = 2. A direct 
inspection of all these presentations, shows that they are either abelian or of the form (1), that is, they satisfy the numeri-
cal conditions given for (1). Furthermore, it is immediate that, discarding the abelian ones, they satisfy the condition of the 
previous theorem, so we have:

Theorem 4.1. If G is a finite metacyclic p-group, then it is the active sum of the family formed by 〈a〉 and the conjugates of 〈b〉 in G (as 
given in the above-mentioned presentations).

We now consider the general case. That is, G will be a finite metacyclic group with a presentation of the form (1)
and we fix K = 〈a〉 and L = 〈b〉 as a metacyclic factorization G = LK for G . From Section 5 of [9], we have that G has 
a decomposition G = N � H where N and H are Hall subgroups with H nilpotent. This decomposition also satisfies that 
N = (L ∩ N)(K ∩ N) is a split metacyclic factorization and has following properties:

Lemma 4.2. Let U = L ∩ N and V = K ∩ N, we have:

i) U � CN (H) := {n ∈ N | ∀h ∈ H(hn = nh)}.
ii) G ′ ∩ N = V and G ′ ∩ H = H ′ .

Proof. i) and the first part of ii) are i) and ii) of Lemma 5.6 in [9]. The second part of ii) is not difficult to prove and so it 
is left to the reader. �

Since N = V � U is a splitting metacyclic factorization, if we let V = 〈v〉 and U = 〈u〉, then N has a presentation
〈
u, v

∣∣ vζ = uε = 1, vu = vη
〉
,

with ηε ≡ 1 mod ζ . By [2] we know that N is the active sum of the family FN = 〈Fi〉ζi=0 with F0 = 〈v〉 and Fi = 〈uvi(η−1)〉
if i > 0.

On the other hand, H is the direct product of its p-Sylow subgroups H p with p ∈ π = π(H). According to Proposition 4.1, 
H p has a metacyclic factorization B p Ap (with Ap � H p) such that the family FH p , consisting of Ap , B p and the conjugates 
of the latter in H p , is regular and independent. Now consider the family FH = ⋃

p∈π FH p .
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Lemma 4.3. H is the active sum of FH .

Proof. Simply observe that the action of H p over H p′ with p �= p′ is trivial. �
For G we consider then the family F formed by closing FN ∪FH under conjugation by G .
It is easy to see that the family F consists of FN together with the conjugates of Ap by V and the conjugates of B p

by V H p . We also observe that T = {U , V } ∪ ⋃
p∈π {Ap, B p} is a transversal for F . It suffices to prove that in the case H p

non-cyclic, B p is not equal to Av
p for some v in V . Suppose that B p = Av

p . If we let 〈b〉 = B p , this would imply b = vav−1

for some a ∈ Ap . But V is normal in G so we have b = av ′ for some v ′ ∈ V . Since N ∩ H = 1, this implies b = a, which 
contradicts the assumption of H p non-cyclic.

Theorem 4.4. G is the active sum of the family F .

Proof. It suffices to show that F is regular and independent.
We first prove regularity. We must show that for every F in T we have [F , NG(F )] = F ∩ G ′ . Observe that [F , NG(F )] ⊆

F ∩ G ′ .

a) F = V .
Since N ∩ G ′ = V , we have V ∩ G ′ = V . On the other hand, NG (V ) = G , so [V , NG(V )] = [V , G]. Now, for any C � K we 
have [C, G] = [C, L]. Also, if C = 〈c〉, presentation (1) gives [C, L] = 〈cr−1〉. That is, [V , G] = 〈vr−1〉 if v is a generator 
of V . Let us see that (r − 1, |V |) = 1. Suppose there exists a prime p that divides r − 1 and |V |. Then p divides |K |
and we have p | (r − 1, |K |). On the other hand, |G ′| is equal to |K |/(r − 1, |K |), so the exponent of p in |G ′| is strictly 
smaller than its exponent in |K |. This is a contradiction since |V | divides |G ′| and the exponent of p in |V | is the same 
as the one in |K |, because V is a Hall subgroup of K .

b) F = U .
Since N ∩ G ′ = V , we have U ∩ G ′ = 1.

c) F = Ap or F = B p for some p in π .
By the regularity of FH we have

F ∩ H ′ = [
F , NH (F )

] ⊆ [
F , NG(F )

] ⊆ F ∩ G ′,
but by Lemma 4.2 F ∩ G ′ = F ∩ H ′ .

For independence we consider again the transversal T .
We prove first that G/G ′ is isomorphic to U ⊕ (H/H ′). Since N is the semidirect product of U and V and G is the 

semidirect product of N and H , each element g ∈ G can be written in a unique way as uvh for some u ∈ U , v ∈ V and 
h ∈ H . Thus we can define a function f : G → U ⊕ H/H ′ that sends g to u + hH ′ . Now take g1 g2 ∈ G and write gi = ui vihi
for i = 1, 2. Since U � CN (H), we have g1 g2 = u1 v1u2h1 v2h2, but also V is a normal subgroup of G , so this is equal to 
u1u2 v ′h1h2 for some v ′ ∈ V and f is a morphism of groups. Finally, if f (uvh) = 1, then u = 1 and vh ∈ G ′ , which gives 
the isomorphism. Now, Lemma 4.2 gives us U G ′/G ′ ∼= U and V G ′/G ′ ∼= 1. On the other hand, since FH is independent and ⋃

p∈π {Ap, B p} is a transversal for it, we have:

H/H ′ ∼=
⊕
p∈π

Ap H ′/H ′ ⊕ B p H ′/H ′,

but H ∩ G ′ = H ′ implies that if F p = Ap or B p , then F p H ′/H ′ ∼= F p G ′/G ′ . �
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