

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

CrossMark

Number theory On small zeros of automorphic *L*-functions

Petits zéros des fonctions L de formes automorphes

Sami Omar

Faculty of Sciences of Tunis, Department of Mathematics, 2092 Campus universitaire El Manar Tunis, Tunisia

ARTICLE INFO

Article history: Received 10 March 2014 Accepted after revision 6 June 2014 Available online 30 June 2014

Presented by Jean-Pierre Serre

ABSTRACT

In this paper, we first formulate the Weil explicit formula of prime number theory for cuspidal automorphic *L*-functions $L(s, \pi)$ of GL_d . Then, we prove some conditional results about the vanishing order at the central point of $L(s, \pi)$. This enables to yield an estimate for the height of the lowest zero of $L(s, \pi)$ on the critical line in terms of the analytic conductor.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cet article, nous formulons d'abord les formules explicites de Weil de la théorie des nombres premiers pour les fonctions *L* de formes automorphes cuspidales $L(s, \pi)$ de GL_d . Ensuite, nous montrons des résultats conditionnels concernant l'ordre d'annulation de $L(s, \pi)$ au point s = 1/2, ce qui permet de donner une estimation de la hauteur du plus petit zéro de $L(s, \pi)$ sur la droite critique en termes de conducteur analytique.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Special values of *L*-functions often carry relevant arithmetic or geometric information on the objects that were used to define the *L*-functions. One is particularly interested in the vanishing or non-vanishing of various families of *L*-functions at s = 1/2 in the standard normalization.

In this paper, we give under the Riemann hypothesis some estimates for the order n_{π} of an eventual zero of a cuspidal automorphic *L*-function $L(s, \pi)$ of GL_d at the point s = 1/2 and for the height of the lowest zero of $L(s, \pi)$ on the critical line in terms of the analytic conductor. For this purpose, we shall first formulate Weil's explicit formula in the context of cuspidal automorphic *L*-functions. Let *K* be an algebraic number field of degree *n*, O_K the ring of integers and A_K the adele ring of *K*. Let S_f and S_{∞} be the sets of all finite and infinite places of *K*, respectively. Write $S_{\infty} = S_{\mathbb{R}} \sqcup S_{\mathbb{C}}$, where $S_{\mathbb{R}}$ (resp. $S_{\mathbb{C}}$) is the set of all real (resp. complex) places of *K* and put $r_1 = \#S_{\mathbb{R}}$ (resp. $r_2 = \#S_{\mathbb{C}}$). Let $\pi = \bigotimes_v \pi_v$

http://dx.doi.org/10.1016/j.crma.2014.06.004

E-mail address: sami.omar@fst.rnu.tn.

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

be an irreducible cuspidal automorphic representation of $GL_d(A_K)$. Then, from the general theory [3], we can define the *L*-function $L(s, \pi)$ by the Euler product:

$$L(s,\pi) = \prod_{\nu \in S_f} \prod_{j=1}^d \left(1 - \alpha_{\nu,j}(\pi) q_{\nu}^{-s} \right)^{-1} = \sum_{n=1}^\infty \frac{\lambda_{\pi}(n)}{n^s} \quad (\text{Re}(s) > 1),$$

where q_v is the residue degree of the local field K_v with K_v being the *v*-adic completion of *K* at *v* and the complex number $\alpha_{v,j}(\pi)$ is determined by the local representation π_v for each $v \in S_f$. From the Euler product expression of $L(s, \pi)$, we get

$$-\frac{L'}{L}(s,\pi) = \sum_{\nu \in S_f} \sum_{l=1}^{\infty} \frac{\Lambda_{\pi}(q_{\nu}^l)}{q_{\nu}^{ls}}$$

where $\Lambda_{\pi}(q_{\nu}^{l}) := \log q_{\nu} \sum_{j=1}^{d} \alpha_{\nu,j}(\pi)^{l}$. Moreover, let $\Lambda(s,\pi)$ be the completed *L*-function defined by

$$\Lambda(s,\pi) = L_{\infty}(s,\pi)L(s,\pi)$$

where
$$L_{\infty}(s, \pi)$$
 is defined by

$$L_{\infty}(s,\pi) = \prod_{\nu \in S_{\infty}} \prod_{j=1}^{d} \Gamma_{\nu} \big(s + \mu_{\nu,j}(\pi) \big).$$

Here, $\Gamma_{\nu}(s)$ is defined by

$$\Gamma_{\nu}(s) = N_{\nu}(N_{\nu}\pi)^{-\frac{N_{\nu}s}{2}} \Gamma\left(\frac{N_{\nu}s}{2}\right)$$

with $N_v = 1$ if $v \in S_{\mathbb{R}}$ and $N_v = 2$ otherwise and $\mu_{v,j}(\pi)$ is a complex number determined by π_v for each $v \in S_{\infty}$. The number $d_{\pi} = d_{L(s,\pi)} = d \sum_{v \in S_{\infty}} N_v$ denotes the degree of the function $L(s,\pi)$. We note that $\operatorname{Re}(\mu_{v,j}(\pi)) > -\frac{1}{2}$. It is known that $\Lambda(s,\pi)$ can be continued analytically to the whole plane \mathbb{C} except in the case $d_{\pi} = 1$, and that π is the trivial character **1** for which $L(s,\pi)$ is the Dedekind zeta function $\zeta_K(s)$ of K and $\Lambda(s,\pi)$ has simple poles at s = 0 and s = 1. Moreover, it satisfies the functional equation

$$N_{\pi}^{\frac{s}{2}}\Lambda(s,\pi) = \mathbf{e}_{\pi}N_{\pi}^{\frac{1-s}{2}}\Lambda(1-s,\overline{\pi}),$$

where $N_{\pi} \ge 1$ is called the conductor of π , e_{π} is the root number which is of modulus 1 and $\overline{\pi}$ is the contragradient representation of π . Since we look for uniform estimates for n_{π} and the height of the lowest zero of $L(s, \pi)$ on the critical line, it turns out that the results can be expressed conveniently in terms of the analytic conductor \mathcal{N}_{π} [5, p. 713] defined by

$$\mathcal{N}_{\pi} = N_{\pi} \prod_{\nu \in S_{\infty}} \prod_{j=1}^{d} \left(1 + \left| \mu_{\nu,j}(\pi) \right|^{N_{\nu}} \right).$$

The Generalized Ramanujan Conjecture (GRC) asserts that if ν is a place where π_{ν} is unramified, then $|\alpha_{\nu,j}(\pi)| = 1$ and $\operatorname{Re}(\mu_{\nu,j}(\pi)) = 0$. Unconditionally, Jacquet and Shalika [6] proved the bounds

$$q_{\nu}^{-1/2} < \left| \alpha_{\nu,j}(\pi) \right| < q_{\nu}^{1/2},$$

and a similar local analysis for archimedean places would give $|\text{Re}(\mu_{v,j}(\pi))| < \frac{1}{2}$. The best bound for general GL_d is due to Luo, Rudnick, and Sarnak [7]. The Ramanujan bound has been proven in very few cases. For instance, the most prominent among them are holomorphic forms on GL_2 and GSp_4 . See [2] for a survey of what progress is known towards proving the Ramanujan bound.

2. The Weil explicit formula

The Weil explicit formula for an *L*-function is a tool that gives a relation between a function evaluated at the zeros of an *L*-function and the Fourier transform of that function evaluated at logarithms of prime powers, with some additional structure related to the global nature of the *L*-function. By following the strategy of Iwaniec and Kowalski [4, Section 5.5], we can formulate the following form of the explicit formula. For T > 0, let $\mathcal{R}(\pi)$ be the set of non-trivial zeros of $L(s, \pi)$.

Lemma 1. Let Q > 1 and $\phi(x)$ be a function in the Schwartz space $S(\mathbb{R})$ whose Fourier transform $\hat{\phi}(y) = \int_{-\infty}^{\infty} \phi(x) e^{-2\pi i x y} dx$ has compact support (in particular, ϕ can be extended as a smooth function on \mathbb{C}). Then, it holds that

$$\begin{split} \sum_{\rho \in \mathcal{R}(\pi)} \phi \left(\frac{\log Q}{2\pi i} \left(\rho - \frac{1}{2} \right) \right) &= \frac{\log N_{\pi}}{\log Q} \hat{\phi}(0) + \left[\phi \left(\frac{\log Q}{4\pi i} \right) + \phi \left(-\frac{\log Q}{4\pi i} \right) \right] \delta_{1,1} + \frac{1}{\log Q} \sum_{\nu \in S_{\infty}} \sum_{j=1}^{d} H_{\nu,j}(Q,\phi,\pi) \\ &- \frac{1}{\log Q} \sum_{\nu \in S_{f}} \sum_{l=1}^{\infty} \left(\frac{\Lambda_{\pi}(q_{\nu}^{l})}{q_{\nu}^{\frac{l}{2}}} \hat{\phi} \left(\frac{l\log q_{\nu}}{\log Q} \right) + \frac{\Lambda_{\overline{\pi}}(q_{\nu}^{l})}{q_{\nu}^{\frac{l}{2}}} \hat{\phi} \left(-\frac{l\log q_{\nu}}{\log Q} \right) \right), \end{split}$$

where

$$H_{\nu,j}(Q,\phi,\pi) = \int_{-\infty}^{\infty} \phi(t) \left(\frac{\Gamma_{\nu}'}{\Gamma_{\nu}} \left(\frac{1}{2} + \mu_{\nu,j}(\pi) + \frac{2\pi \operatorname{i} t}{\log Q} \right) + \frac{\Gamma_{\nu}'}{\Gamma_{\nu}} \left(\frac{1}{2} + \mu_{\nu,j}(\overline{\pi}) - \frac{2\pi \operatorname{i} t}{\log Q} \right) \right) \mathrm{d} t$$

and $\delta_{1,1} = \delta_{1,1}(\pi) = 1$ if $d_{\pi} = 1$ or $\pi = 1$ and 0 otherwise.

Using the same argument as Barner [1], we deduce from Lemma 1 a similar form of the Weil-type explicit formula. For a function $F : \mathbb{R} \to \mathbb{C}$ of bounded variation (i.e., $V_{\mathbb{R}}(F) < \infty$ where $V_{\mathbb{R}}(F)$ is the total variation of F on \mathbb{R}), we define the function $\Phi_F(s)$ for $s \in \mathbb{C}$ by:

$$\Phi_F(s) = \hat{F}\left(-\frac{s-\frac{1}{2}}{2\pi i}\right) = \int_{-\infty}^{\infty} F(x) e^{(s-\frac{1}{2})x} dx.$$

Moreover, for $v \in S_{\infty}$ and $1 \leq j \leq d$, let $F_{v,j}(x,\pi) = F(x)e^{-2i\frac{\eta_{v,j}(\pi)}{N_v}x}$, $\widetilde{F}_{v,j}(x,\pi) := F_{v,j}(x,\pi) + F_{v,j}(-x,\pi)$ and $\mu_{v,j}(\pi) = \xi_{v,j}(\pi) + i\eta_{v,j}(\pi)$ with $\xi_{v,j}(\pi), \eta_{v,j}(\pi) \in \mathbb{R}$.

Theorem 2.1. Let $F : \mathbb{R} \to \mathbb{C}$ be a function of bounded variation that satisfies the following conditions:

- (a) there is a positive constant b such that $V_{\mathbb{R}}(F(x)e^{(\frac{1}{2}+b)|x|}) < \infty$;
- (b) *F* is "normalized", that is, 2F(x) = F(x+0) + F(x-0) for $x \in \mathbb{R}$;
- (c) for any $v \in S_{\infty}$ and $1 \le j \le d$, $\widetilde{F}_{v,j}(x,\pi) = 2F(0) + O(|x|)$ as $|x| \to 0$.

Then, we have

$$\sum_{\rho \in \mathcal{R}(\pi)} \Phi_F(\rho) = F(0) \log \frac{N_{\pi}}{(2^{2r_2} \pi^n)^d} + \left(\Phi_F(0) + \Phi_F(1) \right) \delta_{1,1} + \sum_{\nu \in S_{\infty}} \sum_{j=1}^d W_{\nu,j}(F,\pi) \\ - \sum_{\nu \in S_f} \sum_{l=1}^\infty \left(\frac{\Lambda_{\pi}(q_{\nu}^l)}{q_{\nu}^l} F(l\log q_{\nu}) + \frac{\Lambda_{\overline{\pi}}(q_{\nu}^l)}{q_{\nu}^l} F(-l\log q_{\nu}) \right),$$
(1)

where

$$W_{\nu,j}(F,\pi) = \int_{0}^{\infty} \left(\frac{N_{\nu}F(0)}{x} - \widetilde{F}_{\nu,j}(x,\pi) \frac{e^{(\frac{2}{N_{\nu}} - \frac{1}{2} - \xi_{\nu,j}(\pi))x}}{1 - e^{-\frac{2}{N_{\nu}}x}} \right) e^{-\frac{2}{N_{\nu}}x} dx.$$

Proof. Replace $Q = e^{2\pi}$ and $\phi(x) = \hat{F}(-\frac{x}{2\pi})$ in Lemma 1 and using that $\hat{\phi}(y) = 2\pi F(2\pi y)$, we obtain

$$\sum_{\rho \in \mathcal{R}(\pi)} \Phi_F(\rho) = F(0) \log N_{\pi} + \left(\Phi_F(0) + \Phi_F(1) \right) \delta_{1,1} + \sum_{\nu \in S_{\infty}} \sum_{j=1}^d Y_{\nu,j}(F,\pi) \\ - \sum_{\nu \in S_f} \sum_{l=1}^{\infty} \left(\frac{\Lambda_{\pi}(q_{\nu}^l)}{q_{\nu}^{\frac{1}{2}}} F(l\log q_{\nu}) + \frac{\Lambda_{\pi}(q_{\nu}^l)}{q_{\nu}^{\frac{1}{2}}} F(-l\log q_{\nu}) \right),$$

where

$$Y_{\nu,j}(F,\pi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}\left(-\frac{t}{2\pi}\right) \left(\frac{\Gamma_{\nu}'}{\Gamma_{\nu}}\left(\frac{1}{2} + \mu_{\nu,j}(\pi) + \mathrm{i}t\right) + \frac{\Gamma_{\nu}'}{\Gamma_{\nu}}\left(\frac{1}{2} + \mu_{\nu,j}(\overline{\pi}) - \mathrm{i}t\right)\right) \mathrm{d}t.$$

Notice that both conditions (a) and (b) guarantee the convergence of the infinite sum $\sum_{\rho \in \mathcal{R}(\pi)} \Phi_F(\rho)$ (more precisely, see [1]). Now, we compute the integral $Y_{\nu,j}(F,\pi)$. Since $\mu_{\nu,j}(\overline{\pi}) = \overline{\mu_{\nu,j}(\pi)} = \xi_{\nu,j}(\pi) - i\eta_{\nu,j}(\pi)$ and using the formula $\frac{\Gamma'_{\nu}}{\Gamma_{\nu}}(s) = -\frac{N_{\nu}}{2} \log N_{\nu}\pi + \frac{N_{\nu}}{2} \frac{\Gamma'}{\Gamma}(\frac{N_{\nu}s}{2})$, we have:

$$Y_{\nu,j}(F,\pi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\hat{F}\left(-\frac{t - \eta_{\nu,j}(\pi)}{2\pi} \right) + \hat{F}\left(\frac{t + \eta_{\nu,j}(\pi)}{2\pi} \right) \right] \frac{\Gamma_{\nu}'}{\Gamma_{\nu}} \left(\frac{1}{2} + \xi_{\nu,j}(\pi) + \mathrm{i}t \right) \mathrm{d}t$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{F}_{\nu,j}(\cdot,\pi)^{\wedge} \left(\frac{t}{2\pi} \right) \left(-\frac{N_{\nu}}{2} \log N_{\nu}\pi + \frac{N_{\nu}}{2} \frac{\Gamma'}{\Gamma} \left(\frac{N_{\nu}}{2} \left(\frac{1}{2} + \xi_{\nu,j}(\pi) + \mathrm{i}t \right) \right) \right) \mathrm{d}t$$

$$= F(0) \log \frac{1}{(N_{\nu}\pi)^{N_{\nu}}} + \frac{N_{\nu}}{2} \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{F}_{\nu,j}(\cdot,\pi)^{\wedge} \left(\frac{t}{2\pi} \right) \frac{\Gamma'}{\Gamma} \left(\frac{N_{\nu}}{2} \left(\frac{1}{2} + \xi_{\nu,j}(\pi) \right) + \mathrm{i}\frac{N_{\nu}}{2} t \right) \mathrm{d}t.$$
(2)

Here, for a, b > 0 and $G \in L^1(\mathbb{R})$ satisfying $V_{\mathbb{R}}(G) < \infty$ and G(x) = G(0) + O(|x|) as $s \to 0$, the following formula was also established in [1]:

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{G}\left(\frac{t}{2\pi}\right)\frac{\Gamma'}{\Gamma}\left(a+i\frac{t}{b}\right)dt = \int_{0}^{\infty}\left(\frac{G(0)}{x}-\frac{be^{(1-a)bx}}{1-e^{-bx}}G(-x)\right)e^{-bx}dx.$$

Using the assumption (c) of Theorem 2.1, we can apply the above formula with $G = \tilde{F}_{\nu,j}$, $a = \frac{N_{\nu}}{2}(\frac{1}{2} + \xi_{\nu,j}(\pi))$ and $b = \frac{2}{N_{\nu}}$ and obtain:

$$Y_{\nu,j}(F,\pi) = F(0)\log\frac{1}{(N_{\nu}\pi)^{N_{\nu}}} + W_{\nu,j}(F,\pi)$$

This completes the proof. We may also point out that similar explicit formulas were established by Mestre [8] for rather general L-functions. \Box

3. The lowest zero of L-functions

Theorem 2.1 makes it possible to prove under the Riemann hypothesis that the lowest zero of $L(s, \pi)$ tends to 1/2 when the analytic conductor \mathcal{N}_{π} is large. To do so, we first give a conditional improvement of the upper bound for the vanishing order n_{π} of $L(s, \pi)$ at s = 1/2. This yields an estimate for the imaginary part γ_{π} of the lowest zero $\rho_{\pi} = 1/2 + i\gamma_{\pi}$ of $L(s, \pi)$ distinct from $\frac{1}{2}$. For this purpose, we apply Theorem 2.1 to suitable functions with compact support. If we assume the Riemann hypothesis, then one can prove more precise estimates on γ_{π} . Such improvements have been also considered by Mestre [8] for the elliptic curve *L*-functions, the author [9] for Dedekind zeta functions and Iwaniec and Kowalski [4, Proposition 5.21] as an application of the positivity technique in the explicit formula.

Theorem 3.1. Assuming the Riemann hypothesis, we have for large \mathcal{N}_{π} :

$$n_{\pi} \ll \frac{\log \mathcal{N}_{\pi}}{\log(\frac{3}{d}\log \mathcal{N}_{\pi})}$$
 and $|\gamma_{\pi}| \ll \frac{1}{\log(\frac{3}{d}\log \mathcal{N}_{\pi})}$

Proof. We first need an estimate for the sum over the finite places of *K* in (1). Let *F* be a function of support contained in [-1, 1] satisfying the hypotheses of Theorem 2.1 and let $F_T(x) = F(x/T)$, then $\widehat{F_T}(u) = T\widehat{F}(u)$. By using the classical prime number theorem one can prove the following estimate.

Lemma 2. The sum over $v \in S_f$ in (1) is bounded as follows:

$$\left|\sum_{\nu\in S_f}\sum_{l=1}^{\infty}\left(\frac{\Lambda_{\pi}(q_{\nu}^l)}{q_{\nu}^{\frac{l}{2}}}F_T(l\log q_{\nu})+\frac{\Lambda_{\overline{\pi}}(q_{\nu}^l)}{q_{\nu}^{\frac{l}{2}}}F_T(-l\log q_{\nu})\right)\right|\ll de^T.$$

Actually, since $|\alpha_{v,j}(\pi)| < q_v^{1/2}$, we have $|\Lambda_{\pi}(n)| \le d\Lambda(n)n^{\frac{1}{2}}$. Therefore, using the prime number theorem, the sum over $v \in S_f$ in (1) is bounded by

$$2d\sum_{\log n\leq T}\Lambda(n)\ll d\mathbf{e}^T,$$

where the implied constant is absolute. Let f be a function defined by

$$f(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1\\ 0 & \text{otherwise.} \end{cases}$$

Then, f satisfies the hypothesis of Theorem 2.1 and

$$\widehat{f}(u) = \left(\frac{2\sin(u/2)}{u}\right)^2.$$

Therefore, by applying Theorem 2.1 to f_T , we obtain:

$$n_{\pi}T \le \delta_{1,1} \mathbf{e}^{T/2} - 2\sum_{n\ge 1} \frac{\operatorname{Re}(\Lambda_{\pi}(n))}{n^{\frac{1}{2}}} F_T(\log n) + O(\log \mathcal{N}_{\pi}).$$
(3)

By using Lemma 2 and replacing T by $\log(\frac{3}{d}\log N_{\pi})$ in (3), we have for large N_{π} :

$$n_{\pi} \ll \frac{\log \mathcal{N}_{\pi}}{\log(\frac{3}{d}\log \mathcal{N}_{\pi})}$$

Then, the first assertion of Theorem 3.1 is proved. In order to prove the second assertion of Theorem 3.1, we need another even function supported on [-1, 1]. Let g be an even function defined for $x \ge 0$ by

$$g(x) = \begin{cases} (1-x)\cos\pi x + \frac{3}{\pi}\sin\pi x & \text{if } x \in [0,1] \\ 0 & \text{otherwise.} \end{cases}$$

Note that g satisfies the conditions of Theorem 2.1, then

$$\widehat{g}(u) = \left(2 - \frac{u^2}{\pi^2}\right) \left[\frac{2\pi}{\pi^2 - u^2} \cos\frac{u}{2}\right]^2.$$

Applying Theorem 2.1 with $g_T(x) = g(x/T)$ and replacing *T* by $\sqrt{2\pi}/|\gamma_{\pi}|$, we obtain:

$$\frac{8}{\pi^2} n_\pi T - \left(\Phi_{g_T}(0) + \Phi_{g_T}(1) \right) \delta_{1,1} + 2 \sum_{n \ge 1} \frac{\operatorname{Re}(\Lambda_\pi(n))}{n^{\frac{1}{2}}} g_T(\log n) \gg \log \mathcal{N}_\pi.$$
(4)

Using Lemma 2, the last estimate of n_{π} , we deduce from (4) the following inequality for some constants A and B:

$$\frac{\log \mathcal{N}_{\pi}}{\log(\frac{3}{d}\log \mathcal{N}_{\pi})}AT + Bde^T \gg \log \mathcal{N}_{\pi}$$

Therefore, for sufficiently large \mathcal{N}_{π} , we get

$$T \gg \log\left(\frac{3}{d}\log\mathcal{N}_{\pi}\right),$$

SO

$$|\gamma_{\pi}| \ll \frac{1}{\log(\frac{3}{d}\log\mathcal{N}_{\pi})}.$$

As a consequence, one can show that any fixed interval on the critical line around $s = \frac{1}{2}$ contains zeros of $L(s, \pi)$ when N_{π} is sufficiently large. \Box

Corollary 1. Assuming the Riemann hypothesis, we have:

$$\lim_{\mathcal{N}_{\pi}\to+\infty}\rho_{\pi}=\frac{1}{2}.$$

Acknowledgement

I am indebted to the anonymous referee for his/her valuable comments that contributed to improving the final version of the paper.

References

- [1] K. Barner, On A. Weil's explicit formula, J. Reine Angew. Math. 323 (1981) 139-152.
- [2] V. Blomer, F. Brumley, The role of the Ramanujan conjecture in analytic number theory, Bull. Amer. Math. Soc. 50 (2013) 267-320.
- [3] R. Godement, H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Mathematics, vol. 260, Springer-Verlag, Berlin, New York, 1972.
- [4] H. Iwaniec, E. Kowalski, Analytic Number Theory, Colloquium Publications, vol. 53, American Mathematical Society, 2004.
- [5] H. Iwaniec, P. Sarnak, Perspectives on the analytic theory of *L*-functions, in: Visions in Mathematics, 2000, pp. 705–741, Geom. Funct. Anal. (Special Volume GAFA2000).
- [6] H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations, Amer. J. Math. 103 (1981) 499-588.
- [7] W. Luo, Z. Rudnik, P. Sarnak, On the generalized Ramanujan conjecture for GL(n), in: Proc. Sympos. Pure Math., vol. 66, part 2, 1999, pp. 301-310.
- [8] J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math. 58 (1986) 209-232.
- [9] S. Omar, Majoration du premier zéro de la fonction zêta de Dedekind, Acta Arith. 95 (2000) 61–65.