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Le but de cette note est de donner une expression géométrique pour les multiplicités de 
l’indice équivariant de l’opérateur de Dirac tordu par un fibré en lignes.
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1. Introduction

Let M be a compact connected manifold. We assume that M is even dimensional and oriented. We consider a spinc

structure on M , and denote by S the corresponding irreducible Clifford module. Let K be a compact connected Lie group 
acting on M , and preserving the spinc structure. We denote by D : Γ (M, S+) → Γ (M, S−) the corresponding twisted Dirac 
operator. The equivariant index of D , denoted Qspin

K (M), belongs to the Grothendieck group of representations of K ,

Qspin
K (M) =

∑
π∈K̂

m(π)π.

An important example is when M is a compact complex manifold, K a compact group of holomorphic transformations 
of M , and L any holomorphic K -equivariant line bundle on M (not necessarily ample). Then the Dolbeaut operator twisted 
by L can be realized as a twisted Dirac operator D . In this case Qspin

K (M) = ∑
q(−1)q H0,q(M, L).

The aim of this note is to give a geometric description of the multiplicity m(π) in the spirit of the Guillemin–Sternberg 
phenomenon [Q , R] = 0 [5,7,8,11,9].

Consider the determinant line bundle L = det(S) of the spinc structure. This is a K -equivariant complex line bundle 
on M . The choice of a K -invariant Hermitian metric and of a K -invariant Hermitian connection ∇ on L determines an 
abstract moment map

Φ∇ : M → k∗
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by the relation 2i〈Φ∇ , X〉, for all X ∈ k. We compute m(π) in term of the reduced “manifolds” Φ−1
∇ ( f )/K f . This formula 

extends the result of [10]. However, in this note, we do not assume any hypothesis on the line bundle L, in particular we do 
not assume that the curvature of the connection ∇ is a symplectic form. In this pre-symplectic setting, a (partial) answer to 
this question has been obtained by [6,3,4,1] when K is a torus. Our method is based on localization techniques as in [9,10].

2. Admissible coadjoints orbits

We consider a compact connected Lie group K with Lie algebra k. Consider an admissible coadjoint orbit O (as in [2]), 
oriented by its symplectic structure. Then O carries a K -equivariant bundle of spinors SO , such that the associated moment 
map is the injection O in k∗ . We denote by Qspin

K (O) the corresponding equivariant index.
Let us describe the admissible coadjoint orbits with their spinc index.
Let T be a Cartan subgroup of K with Lie algebra t. Let Λ ⊂ t∗ be the lattice of weights of T (thus eiλ is a character 

of T ). Choose a positive system �+ ⊂ t∗ , and let ρ = 1
2

∑
α∈�+ α. Let t∗≥0 be the closed Weyl chamber and we denote by F

the set of the relative interiors of the faces of t∗≥0. Thus t∗≥0 = ∐
σ∈F σ , and we denote t∗>0 ∈F the interior of t∗≥0.

We index the set K̂ of classes of finite dimensional irreducible representations of K by the set (Λ + ρ) ∩ t∗>0. The irre-
ducible representation πλ corresponding to λ ∈ (Λ +ρ) ∩ t∗>0 is the irreducible representation with infinitesimal character λ. 
Its highest weight is λ − ρ .

Let σ ∈ F . The stabilizer Kξ of a point ξ ∈ σ depends only of σ . We denote it by Kσ , and by kσ its Lie algebra. We 
choose on kσ the system of positive roots contained in �+ , and let ρσ be the corresponding ρ .

When μ ∈ σ , the coadjoint orbit K · μ is admissible if and only if μ − ρ + ρσ ∈ Λ. The spinc equivariant index of the 
admissible orbits is described in the following lemma.

Lemma 2.1. Let K · μ be an admissible orbit: μ ∈ σ and μ − ρ + ρσ ∈ Λ. If μ + ρσ is regular, then μ + ρσ ∈ ρ + σ . Thus we have:

Qspin
K (K · μ) =

{
0 if μ + ρσ is singular,
πμ+ρσ if μ + ρσ is regular.

In particular, if λ ∈ (Λ + ρ) ∩ t∗>0 , then K · λ is admissible and Qspin
K (K · λ) = πλ .

Let Hk be the set of conjugacy classes of the reductive algebras k f , f ∈ k∗ . We denote by Sk the set of conjugacy classes 
of the semi-simple parts [h, h] of the elements (h) ∈ Hk. The map (h) → ([h, h]) induces a bijection between Hk and Sk.

The map F −→Hk, σ �→ (kσ ), is surjective and for (h) ∈ Hk we denote by

• F(h) the set of σ ∈F such that (kσ ) = (h),
• k∗

h
⊂ k∗ the set of elements f ∈ k∗ with infinitesimal stabilizer k f belonging to the conjugacy class (h).

We have k∗
h

= K (
⋃

σ∈F(h) σ ). In particular, all coadjoint orbits contained in k∗
h

have the same dimension. We say that such 
a coadjoint orbit is of type (h). If (h) = (t), then k∗

h
is the open subset of regular elements.

We denote by A(h) the set of admissible coadjoint orbits of type (h). This is a discrete subset of orbits in k∗
h

.

Example 1. Consider the group K = SU(3) and let (h) be the conjugacy class such that k∗
h

is equal to the set of sub-
regular elements f ∈ k∗ (the orbit of f is of dimension dim(K/T ) − 2). Let ω1, ω2 be the two fundamental weights. 
Let σ1, σ2 be the half lines R>0ω1, R>0ω2. Then k∗

h
∩ t∗≥0 = σ1 ∪ σ2. The set A(h) is equal to the collection of orbits 

K · ( 1+2n
2 ωi), n ∈ Z≥0, i = 1, 2. The representation Qspin

K (K · ( 1+2n
2 ωi)) is 0 if n = 0, otherwise it is the irreducible repre-

sentation πρ+(n−1)ωi . In particular, both representations associated with the admissible orbits 3
2 ω1 and 3

2 ω2 are the trivial 
representation πρ .

3. The theorem

Consider the action of K in M . Let (kM) be the conjugacy class of the generic infinitesimal stabilizer. On a K -invariant 
open and dense subset of M , the conjugacy class of km is equal to (kM). Consider the (conjugacy class) ([kM , kM ]).

We start by stating two vanishing lemmas.

Lemma 3.1. If ([kM , kM ]) does not belong to the set Sk, then Qspin
K (M) = 0 for any K -invariant spinc structure on M.

If ([kM , kM ]) = ([h, h]) for some (h) ∈ Hk, any K -invariant map Φ : M → k∗ is such that Φ(M) is included in the closure 
of k∗ .
h
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Lemma 3.2. Assume that ([kM, kM ]) = ([h, h]) with (h) ∈ Hk. Let us consider a spinc structure on M with determinant bundle L. 
If there exists a K -invariant Hermitian connection ∇ on L such that Φ∇(M) ∩ k∗

h
= ∅, then Qspin

K (M) = 0.

Thus from now on, we assume that the action of K on M is such that ([kM , kM ]) = ([h, h]) for some (h) ∈ Hk. Let us 
consider a spinc structure on M with determinant bundle L and a K -invariant Hermitian connection with moment map 
Φ∇ : M → k∗ .

We extend the definition of the index to disconnected even dimensional oriented manifolds by defining Qspin
K (M) to be 

the sum over the connected components of M . If K is the trivial group, Qspin
K (M) ∈ Z and is denoted simply by Qspin(M).

Consider a coadjoint orbit O = K · f . The reduced space MO is defined to be the topological space Φ−1
∇ (O)/K =

Φ−1
∇ ( f )/K f . We also denote it by M f . This space might not be connected.

In the next section, we define a Z-valued function O �→ Qspin(MO) on the set A(h) of admissible orbits of type (h). We 
call it the reduced index:

• if MO = ∅, then Qspin(MO) = 0,
• when MO is an orbifold, the reduced index Qspin(MO) is defined as an index of a Dirac operator associated with a 

natural “reduced” spinc structure on MO .

Otherwise, it is defined via a limit procedure. Postponing this definition, we have the following theorem.

Theorem 3.3. Assume that ([kM, kM ]) = ([h, h]) with (h) ∈Hk. Then

Qspin
K (M) =

∑
O∈A(h)

Qspin(MO)Qspin
K (O).

In the expression above, when (h) is not Abelian, Qspin
K (O) can be 0, and several orbits O ∈ A(h) can give the same 

representation.
Theorem 3.3 is in the spirit of the [Q , R] = 0 theorem. However, it has some radically new features. First, as Φ∇ is not 

the moment map of a Hamiltonian structure, the definition of the reduced space requires more care. For example, the fibers 
of Φ∇ might not be connected, and the Kirwan set Φ∇ (M) ∩ t∗≥0 is not a convex polytope. Furthermore, this Kirwan set 
depends on the choice of connection ∇ . Second, the map O ∈ A(h) → Qspin

K (O) is not injective, when h is not Abelian. Thus 
the multiplicities mλ of the representation πλ in Qspin

K (M) will be eventually obtained as a sum of reduced indices involving 
several reduced spaces.

We explicit this last point.

Theorem 3.4. Assume that ([kM, kM ]) = ([h, h]) with (h) ∈ Hk. Let mλ ∈ Z be the multiplicity of the representation πλ in Qspin
K (M). 

We have:

mλ =
∑

σ∈F(h)

λ−ρσ ∈σ

Qspin(Mλ−ρσ ). (1)

More explicitly, the sum is taken over the (relative interiors of) faces σ of the Weyl chamber such that:([kM , kM ]) = ([kσ , kσ ]), Φ∇(M) ∩ σ �= ∅, λ ∈ {σ + ρσ }. (2)

If kM is Abelian, we have simply mλ = Qspin(Φ−1
∇ (λ)/T ). In particular, if the group K is the circle group, and λ is a 

regular value of the moment map Φ∇ , this result was obtained in [1].
If kM is not Abelian, and the curvature of the connection ∇ is symplectic, Kirwan’s convexity theorem implies that the 

image Φ∇(M) ∩ t∗≥0 is contained in the closure of one single σ . Thus there is a unique σ satisfying Conditions (2). In this 
setting, Theorem 3.4 is obtained in [10].

Let us give an example where several σ contribute to the multiplicity of a representation πλ .
We take the notations of Example 1. We label ω1, ω2 so that kω1 is the group S(U (2) × U (1)) stabilizing the line Ce3 in 

the fundamental representation of SU(3) in C3 = Ce1 ⊕Ce2 ⊕Ce3.
Let P = {0 ⊂ L2 ⊂ L3 ⊂ C

4} be the partial flag manifold with L2 a subspace of C
4 of dimension 2 and L3 a subspace 

of C
4 of dimension 3. Denote by L1, L2 the equivariant line bundles on P with fiber at (L2, L3) the one-dimensional 

spaces ∧2L2 and L3/L2, respectively. Let M be the subset of P where L2 is assumed to be a subspace of C3. Thus M is 
fibered over P2(C) with fiber P1(C). The group SU(3) acts naturally on M , and the generic stabilizer of the action is SU(2). 
We denote by La,b the line bundle La

1 ⊗ Lb
2 restricted to M . This line bundle is equipped with a natural holomorphic 

and Hermitian connection ∇ . Consider the spinc structure with determinant bundle L = L2a+1,2b+1, where a, b are positive 
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integers. If a ≥ b, the curvature of the line bundle L is non-degenerate, and we are in the symplectic case. Let us consider 
b > a. It is easy to see that, in this case, the Kirwan set Φ∇ (M) ∩ t∗≥0 is the non-convex set [0, b − a]ω1 ∪ [0, a + 1]ω2. We 
compute the character of the representation Qspin

K (M) by the Atiyah–Bott fixed point formula, and find:

Qspin
K (M) =

b−a−2∑
j=0

πρ+ jω1 ⊕
a−1∑
j=0

πρ+ jω2 .

In particular, the multiplicity of πρ (the trivial representation) is equal to 2. We use now Theorem 3.3 and the discussion 
of Example 1, and obtain (reduced multiplicities are equal to 1):

Qspin
K (M) =

b−a−1∑
j=0

Qspin
K

(
K ·

(
1 + 2 j

2
ω1

))
⊕

a∑
j=0

Qspin
K

(
K ·

(
1 + 2 j

2
ω2

))
.

Using the formulae for Qspin
K (K · ( 1+2n

2 ωi)) given in Example 1, these two formulae (fortunately) coincide. Furthermore we 
see that both faces σ1, σ2 give a non-zero contribution to the multiplicity of the trivial representation.

4. Definition of the reduced index

We start by defining the reduced index for the action of an Abelian torus H on a connected manifold Y . Denote by Λ
the lattice of weights of H . We do not assume Y compact, but we assume that the set of stabilizers Hm of points in Y is 
finite. Let hY be the generic infinitesimal stabilizer of the action H on Y , and HY be the connected subgroup of H with 
Lie algebra hY . Thus HY acts trivially on Y . Let us consider a spinc structure on Y with determinant bundle L, and an 
H-invariant connection ∇ on L. The image Φ�(Y ) spans an affine space IY parallel to h⊥

Y . We assume that the fibers of the 
map Φ� are compact. We can easily prove that there exists a finite collection of hyperplanes W 1, . . . , W p in IY such that 
the group H/HY acts locally freely on Φ−1

� ( f ), when f is in Φ∇(Y ), but not on any of the hyperplanes W i .

Proposition 1.

• When μ ∈ IY ∩Λ is a regular value of Φ∇ : Y → IY , the reduced space Yμ is an oriented orbifold equipped with an induced spinc

structure: we denote Qspin(Yμ) the corresponding spinc index.
• With any connected component C of IY \ ⋃p

k=1 W k, we can associate a periodic polynomial function qC : Λ ∩ IY → Z such that

qC(μ) = Qspin(Yμ)

for any element μ ∈ Λ ∩ C which is a regular value of Φ : Y → IY .
• If μ ∈ Λ belongs to the closure of two connected components C1 and C2 of IY \ ⋃p

k=1 W k, we have:

qC1(μ) = qC2(μ).

We can now state the definition of the “reduced” index on Λ:

• Qspin(Yμ) = 0 if μ /∈ Λ ∩ IY ,
• for any μ ∈ Λ ∩ IY , we define Qspin(Yμ) as being equal to qC(μ), where C is any connected component containing μ

in its closure. In fact, Qspin(Yμ) is computed as an index of a particular spinc structure on the orbifold Φ−1
∇ (μ + ε)/H

for any ε small and such that μ + ε is a regular value of Φ∇ .

If Y is not connected, we define the reduced index at a point μ ∈ Λ as the sum of reduced indices over all connected 
components of Y .

More generally, let H be a compact connected group acting on Y and such that [H, H] acts trivially on Y . Let SY be an 
equivariant spinc structure on Y with determinant bundle L. For any μ ∈ h∗ such that μ([h, h]) = 0, and admissible for H , 
it is then possible to define Qspin(Yμ). Indeed eventually passing to a double cover of the torus H/[H, H], and translating 
by the square root of the action of H/[H, H] on the fiber of L, we are reduced to the preceding case of the action of the 
torus H/[H, H], and an H/[H, H]-equivariant spinc structure on Y .

Consider now the action of a connected compact group K on M . Let σ be a (relative interior) of a face of t∗≥0 that 
satisfies the following conditions:([kM , kM ]) = ([kσ , kσ ]), Φ−1

∇ (σ ) �= ∅. (3)

Let us explain how to compute the “reduced” index map μ → Qspin(Mμ) on the set σ ∩{Λ +ρ −ρσ } that parameterizes 
the admissible orbits intersecting σ .



P.-É. Paradan, M. Vergne / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 673–677 677
We work with the “slice” Y defined by σ . The set Uσ := Kσ (
⋃

σ⊂τ τ ) is an open neighborhood of σ in k∗σ such that 
the open subset K Uσ ⊂ k∗ is isomorphic to K ×Kσ Uσ . We consider the Kσ -invariant subset Y = Φ−1

∇ (Uσ ). The following 
lemma allows us to reduce the problem to the Abelian case.

Lemma 4.1.

• Y is a non-empty submanifold of M such that K Y is an open subset of M isomorphic to K ×Kσ Y .
• The Clifford module SM on M determines a Clifford module SY on Y with determinant line bundle LY = LM |Y ⊗C−2(ρ−ρσ ) . The 

corresponding moment map is Φ∇|Y − ρ + ρσ .
• The group [Kσ , Kσ ] acts trivially on Y and on the bundle of spinors SY .

We thus consider Y with action of Kσ , and Clifford bundle SY . If μ ∈ σ is admissible for K , then μ − ρ + ρσ ∈ Λ is 
admissible for Kσ . The reduced space Mμ = Φ−1

∇ (μ)/Kσ is equal to the reduced space Yμ−ρ+ρσ . As [Kσ , Kσ ] acts trivially 
on (Y , SY ), we are in the Abelian case, and we define Qspin(Mμ) := Qspin(Yμ−ρ+ρσ ).
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