Mathematical analysis/Harmonic analysis

Transmutation operators associated with an integro-differential operator on the real line and certain of their applications

Opérateurs de transmutation associés à un opérateur intégro-différentiel sur la droite réelle et certaines de leurs applications

Mohamed Ali Mourou
Department of Mathematics, College of Sciences for Girls, University of Dammam, P.O. Box 1982, Dammam 31441, Saudi Arabia

A R T I C L E I N F O

Article history:

Received 23 August 2013
Accepted after revision 24 April 2014
Available online 5 June 2014
Presented by Jean-Michel Bony

Abstract

We consider a singular integro-differential operator Λ on the real line. We build transmutation operators of Λ and its dual $\widetilde{\Lambda}$ into the first derivative operator $\mathrm{d} / \mathrm{d} x$. Using these transmutation operators, we develop a new commutative harmonic analysis on the real line corresponding to the operator Λ.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous considérons un opérateur integro-différentiel singulier Λ sur la droite réelle. Nous construisons une paire de transformations intégrales qui transmutent Λ et son dual $\widetilde{\Lambda}$ en l'opérateur $\mathrm{d} / \mathrm{d} x$. En utilisant les propriétés de ces opérateurs de transmutation, on définit une nouvelle analyse harmonique sur \mathbb{R} correspondant à l'opérateur Λ.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations

We denote by $\mathcal{E}(\mathbb{R})$ the space of C^{∞} functions on \mathbb{R}, provided with the topology of compact convergence for all derivatives. Recall that each function f in $\mathcal{E}(\mathbb{R})$ may be decomposed uniquely into the sum $f=f_{\mathrm{e}}+f_{\mathrm{o}}$, where the even part f_{e} is defined by $f_{\mathrm{e}}(x)=(f(x)+f(-x)) / 2$ and the odd part f_{o} by $f_{0}(x)=(f(x)-f(-x)) / 2 . \mathcal{E}_{\mathrm{e}}(\mathbb{R})$ (resp. $\left.\mathcal{E}_{0}(\mathbb{R})\right)$ stands for the subspace of $\mathcal{E}(\mathbb{R})$ consisting of even (resp. odd) functions. For $a>0, \mathcal{D}_{a}(\mathbb{R})$ designates the space of C^{∞} functions on \mathbb{R} supported in $[-a, a]$, equipped with the topology induced by $\mathcal{E}(\mathbb{R})$. Put $\mathcal{D}(\mathbb{R})=\bigcup_{a>0} \mathcal{D}_{a}(\mathbb{R})$ endowed with the inductive limit topology. $\mathcal{D}_{\mathrm{e}}(\mathbb{R})$ (resp. $\mathcal{D}_{0}(\mathbb{R})$) denotes the subspace of $\mathcal{D}(\mathbb{R})$ consisting of even (resp. odd) functions. For $a>0$, let \mathbf{H}_{a} be the space of entire, rapidly decreasing functions of exponential type a. Put $\mathbf{H}=\bigcup_{a>0} \mathbf{H}_{a}$, endowed with the inductive limit topology. Let \mathcal{J} (resp. J) denotes the map defined on $\mathcal{E}_{\mathrm{e}}(\mathbb{R})\left(\right.$ resp. $\left.\mathcal{D}_{0}(\mathbb{R})\right)$ by $\mathcal{J} h(x)=\frac{1}{A(x)} \int_{0}^{x} h(t) A(t) \mathrm{dt}$ (resp. $\left.\mathcal{J} h(x)=\int_{-\infty}^{x} h(t) \mathrm{d} t\right)$.

2. Transmutation operators

In [4] we have considered the first-order singular differential-difference operator

$$
\Lambda_{0} f(x)=\frac{\mathrm{d} f}{\mathrm{~d} x}+\frac{A^{\prime}(x)}{A(x)}\left(\frac{f(x)-f(-x)}{2}\right)
$$

where

$$
A(x)=|x|^{2 \alpha+1} B(x), \quad \alpha>-1 / 2
$$

B being a positive C^{∞} even function on \mathbb{R}. We have exploited a pair of transmutation operators between Λ_{0} and the first derivative operator $\mathrm{d} / \mathrm{d} x$, to initiate a quite new harmonic analysis on the real line tied to Λ_{0}, in which several analytic structures on \mathbb{R} were generalized. The key role in our investigation was played by the second-order differential operator

$$
\Delta_{0} f(x)=\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\frac{A^{\prime}(x)}{A(x)} \frac{\mathrm{d} f}{\mathrm{~d} x}
$$

which is linked to Λ_{0} via the relationship

$$
\Lambda_{0}^{2} f=\Delta_{0} f, \quad \text { for all } f \in \mathcal{E}_{\mathrm{e}}(\mathbb{R})
$$

Put

$$
\Delta=\Delta_{0}+q
$$

where q is a real-valued C^{∞} even function on \mathbb{R}. The motivation of the present paper was to look for an integro-differential operator of the form

$$
\Lambda=\Lambda_{0}+M(x) \int_{-x}^{x} f(t) N(t) \mathrm{d} t
$$

(M and N being two even functions) such that

$$
\begin{equation*}
\Lambda^{2} f=\Delta f, \quad \text { for all } f \in \mathcal{E}_{\mathrm{e}}(\mathbb{R}) \tag{1}
\end{equation*}
$$

A straightforward calculation shows that (1) is equivalent to

$$
(2 M N-q) f+\frac{2}{A}(A M)^{\prime} \int_{0}^{x} f N \mathrm{~d} t=0
$$

for all $f \in \mathcal{E}_{\mathrm{e}}(\mathbb{R})$. The easiest choice was

$$
A M=1 \quad \text { and } \quad 2 M N-q=0
$$

that is,

$$
\Lambda=\Lambda_{0}+\frac{1}{A(x)} \int_{0}^{x}\left(\frac{f(t)+f(-t)}{2}\right) q(t) A(t) \mathrm{d} t
$$

The objective of this work is to establish for Λ results similar to those obtained for Λ_{0} in [4]. This objective is achieved by using the crucial identity (1) and some basic facts about the differential operator Δ. Recall that Lions [2] has constructed an automorphism X of $\mathcal{E}_{\mathrm{e}}(\mathbb{R})$ satisfying

$$
X \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=\Delta X f \quad \text { and } \quad X f(0)=f(0) \quad \text { for all } f \in \mathcal{E}_{\mathrm{e}}(\mathbb{R})
$$

The construction of the Lions operator X was aimed at allowing the resolution of certain mixed value problems. Later, Trimèche [5] has obtained for the Lions operator X the following integral representation:

$$
\begin{equation*}
X f(x)=\int_{0}^{|x|} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \neq 0, f \in \mathcal{E}_{\mathrm{e}}(\mathbb{R}), \tag{2}
\end{equation*}
$$

where $\mathcal{K}(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is an even continuous function on $]-|x|,|x|[$, with support in $[-|x|,|x|]$. Moreover, he proved that the integral transform

$$
\begin{equation*}
{ }^{\mathrm{t}} X f(y)=\int_{|y|}^{\infty} \mathcal{K}(x, y) f(x) A(x) \mathrm{d} x, \quad y \in \mathbb{R} \tag{3}
\end{equation*}
$$

is an automorphism of $\mathcal{D}_{\mathrm{e}}(\mathbb{R})$ satisfying the intertwining relation

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}{ }^{\mathrm{t}} X f={ }^{\mathrm{t}} X \Delta f, \quad f \in \mathcal{D}_{\mathrm{e}}(\mathbb{R})
$$

We claim the next statements.

Theorem 2.1. The map

$$
\begin{equation*}
V f=X\left(f_{\mathrm{e}}\right)+\mathcal{J} X \frac{\mathrm{~d}}{\mathrm{~d} x}\left(f_{\mathrm{o}}\right) \tag{4}
\end{equation*}
$$

is the only automorphism of $\mathcal{E}(\mathbb{R})$ satisfying

$$
V \frac{\mathrm{~d}}{\mathrm{~d} x} f=\Lambda V f \quad \text { and } \quad V f(0)=f(0) \quad \text { for all } f \in \mathcal{E}(\mathbb{R})
$$

Theorem 2.2. The map

$$
\begin{equation*}
{ }^{\mathrm{t}} V f={ }^{\mathrm{t}} X\left(f_{\mathrm{e}}\right)+\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{X} \mathcal{J}\left(f_{\mathrm{o}}\right) \tag{5}
\end{equation*}
$$

is an automorphism of $\mathcal{D}(\mathbb{R})$ satisfying the intertwining relation

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{t} V f={ }^{\mathrm{t}} V \tilde{\Lambda} f, \quad f \in \mathcal{D}(\mathbb{R})
$$

$\widetilde{\Lambda}$ being the dual operator of Λ defined by

$$
\tilde{\Lambda} f(x)=\frac{\mathrm{d} f}{\mathrm{~d} x}+\frac{A^{\prime}(x)}{A(x)}\left(\frac{f(x)-f(-x)}{2}\right)+q(x) \int_{-\infty}^{x}\left(\frac{f(t)-f(-t)}{2}\right) \mathrm{d} t
$$

Remark 2.1. (i) If $A(x)=|x|^{2 \alpha+1}$ and $q(x)=0$, then the integro-differential operator Λ reduces to the so-called Dunkl operator with parameter $\alpha+1 / 2$ associated with the reflection group \mathbb{Z}_{2} on \mathbb{R}. Moreover, $V(f)(x)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{-1}^{1} f(t x)(1-$ $\left.t^{2}\right)^{\alpha-1 / 2}(1+t) \mathrm{d} t$ (see [1]).
(ii) The integro-differential operators Λ and $\widetilde{\Lambda}$ are connected by the integral formula: $\int_{\mathbb{R}} \Lambda f(x) g(x) A(x) \mathrm{d} x=$ $-\int_{\mathbb{R}} f(x) \tilde{\Lambda} g(x) A(x) \mathrm{d} x$, which is true for every $f \in \mathcal{E}(\mathbb{R})$ and $g \in \mathcal{D}(\mathbb{R})$.
(iii) The integral transform V (resp. ${ }^{\mathrm{t}} V$) is said to be a transmutation operator between Λ (resp. $\widetilde{\Lambda}$) and the first derivative operator $\mathrm{d} / \mathrm{d} x$ on the space $\mathcal{E}(\mathbb{R})$ (resp. $\mathcal{D}(\mathbb{R})$).
(iv) The integral transforms V and ${ }^{t} V$ are dual by virtue of the relation: $\int_{\mathbb{R}} V f(x) g(x) A(x) \mathrm{d} x=\int_{\mathbb{R}} f(y)^{t} V g(y) \mathrm{d} y$, valid for any $f \in \mathcal{E}(\mathbb{R})$ and $g \in \mathcal{D}(\mathbb{R})$.
(v) A combination of (2), (3), (4) and (5) yields

$$
V f(x)=\int_{-|x|}^{|x|} K(x, y) f(y) \mathrm{d} y \quad\left(\operatorname{resp}^{\mathrm{t}} V f(y)=\int_{|x| \geq|y|} K(x, y) f(x) A(x) \mathrm{d} x\right)
$$

with

$$
K(x, y)=\frac{1}{2} \mathcal{K}(x, y)-\frac{\operatorname{sgn}(x)}{2 A(x)} \frac{\partial}{\partial y}\left(\int_{|y|}^{|x|} \mathcal{K}(t, y) A(t) \mathrm{d} t\right)
$$

3. Generalized Fourier transform

The generalized Fourier transform of a function $f \in \mathcal{D}(\mathbb{R})$ is defined by

$$
\mathcal{F}(f)(\lambda)=\int_{\mathbb{R}} f(x) \Phi_{-\lambda}(x) A(x) \mathrm{d} x, \quad \lambda \in \mathbb{C}
$$

where $\Phi_{-\lambda}(x)=V\left(\mathrm{e}^{-\mathrm{i} \lambda \cdot}\right)(x)$. The Dunkl transform with parameter $\alpha+1 / 2$ associated with the reflection group \mathbb{Z}_{2} on \mathbb{R} is a particular case of \mathcal{F} corresponding to $A(x)=|x|^{2 \alpha+1}$ and $q(x)=0$. The generalized Fourier transform \mathcal{F} is linked to the classical Fourier transform ${ }^{\wedge}$ on \mathbb{R} via the relation:

$$
\begin{equation*}
\mathcal{F}(f)(\lambda)=\left({ }^{\mathrm{t}} V f\right)^{\wedge}(\lambda), \quad f \in \mathcal{D}(\mathbb{R}) \tag{6}
\end{equation*}
$$

Furthermore, we have the decomposition:

$$
\begin{equation*}
\mathcal{F}_{\Lambda}(f)(\lambda)=\mathcal{F}_{\Delta}\left(f_{\mathrm{e}}\right)(\lambda)+\mathrm{i} \lambda \mathcal{F}_{\Delta} \mathcal{J}\left(f_{\mathrm{o}}\right)(\lambda), \tag{7}
\end{equation*}
$$

where \mathcal{F}_{Δ} stands for the Fourier transform related to the differential operator Δ, defined on $\mathcal{D}_{\mathrm{e}}(\mathbb{R})$ by $\mathcal{F}_{\Delta}(f)(\lambda)=$ $\int_{\mathbb{R}} f(x) \varphi_{\lambda}(x) A(x) \mathrm{d} x ; \varphi_{\lambda}$ being the solution of the differential equation $\Delta u=-\lambda^{2} u, u(0)=1$ (see [5]). From (6) and the classical Paley-Wiener theorem, we deduce the next theorem:

Theorem 3.1 (Paley-Wiener). The generalized Fourier transform \mathcal{F} is an isomorphism from $\mathcal{D}(\mathbb{R})$ onto \mathbf{H}. More precisely, $f \in \mathcal{D}_{a}(\mathbb{R})$ if, and only if, $\mathcal{F}(f) \in \mathbf{H}_{a}$.

Combining (7) and [5, Chapter 9], we establish for \mathcal{F} the following two standard results:
Theorem 3.2 (Inversion formula). For all $f \in \mathcal{D}(\mathbb{R})$,

$$
f(x)+\mathcal{J}\left(q \mathcal{J} f_{0}\right)(x)=\int_{\mathbb{R}} \mathcal{F}(f)(\lambda) \Phi_{\lambda}(x) \mathrm{d} \mu_{1}(\lambda)+\int_{\mathbb{R}} \mathcal{F}(f)(\mathrm{i} \lambda) \Phi_{i \lambda}(x) \mathrm{d} \mu_{2}(\lambda)
$$

where μ_{1} is an even positive tempered measure on \mathbb{R}, and μ_{2} is an even positive measure on \mathbb{R} satisfying

$$
\int_{\mathbb{R}} \mathrm{e}^{a|y|} \mathrm{d} \mu_{2}(y)<\infty, \quad \text { for all } a>0
$$

Theorem 3.3 (Parseval formula). For all $f, g \in \mathcal{D}(\mathbb{R})$,

$$
\int_{\mathbb{R}} f(y) g(-y) A(y) \mathrm{d} y+\int_{\mathbb{R}} q(y) \mathcal{J} f_{\mathrm{o}}(y) \mathcal{J} g_{0}(y) A(y) \mathrm{d} y=\int_{\mathbb{R}} \mathcal{F}(f)(\lambda) \mathcal{F}(g)(\lambda) \mathrm{d} \mu_{1}(\lambda)+\int_{\mathbb{R}} \mathcal{F}(f)(\mathrm{i} \lambda) \mathcal{F}(g)(\mathrm{i} \lambda) \mathrm{d} \mu_{2}(\lambda),
$$

μ_{1} and μ_{2} being as in Theorem 3.2.
Remark 3.1. If $A(x)=|x|^{2 \alpha+1}$ and $q(x)=0$, then $\mathrm{d} \mu_{1}(\lambda)=2^{-(2 \alpha+2)}(\Gamma(\alpha+1))^{-2}|\lambda|^{2 \alpha+1} \mathrm{~d} \lambda$ and $\mu_{2}=0$.

4. Generalized translation operators

With the help of the transmutation operator V, we introduce in $\mathcal{E}(\mathbb{R})$ generalized translation operators $T^{x}, x \in \mathbb{R}$, defined by:

$$
T^{x} f(y)=V_{x} V_{y}\left[V^{-1} f(x+y)\right], \quad y \in \mathbb{R}
$$

The basic properties of the $T^{x}, x \in \mathbb{R}$, are provided by the following statement:

Theorem 4.1. (i) For all $x \in \mathbb{R}, T^{x}$ is a linear bounded operator from $\mathcal{E}(\mathbb{R})$ into itself; the function $x \mapsto T^{x}$ is C^{∞}.
(ii) We have: $T^{0}=$ identity, $T^{x} T^{y}=T^{y} T^{x}, \Lambda T^{x}=T^{x} \Lambda$.
(iii) For all $f \in \mathcal{E}(\mathbb{R}), T^{x} f(y)=T^{y} f(x)$.
(iv) For each $\lambda \in \mathbb{C}$, we have the product formula: $T^{x}\left(\Phi_{\lambda}\right)(y)=\Phi_{\lambda}(x) \Phi_{\lambda}(y)$.
(v) For all $f \in \mathcal{E}(\mathbb{R})$ and $g \in \mathcal{D}(\mathbb{R})$, we have: $\int_{\mathbb{R}} T^{x} f(y) g(y) A(y) \mathrm{d} y=\int_{\mathbb{R}} f(y)^{\mathrm{t}} T^{x} g(y) A(y) \mathrm{d} y$, where ${ }^{\mathrm{t}} T^{x} g(y)=$ $V_{x}\left({ }^{\mathrm{t}} V^{-1}\right)_{y}\left[{ }^{\mathrm{t}} V g(y-x)\right]$.
(vi) Let f be in $\mathcal{D}_{a}(\mathbb{R}), a>0$. Then for all $x \in \mathbb{R},{ }^{\mathrm{t}} T^{x} f$ is an element of $\mathcal{D}_{a+|x|}(\mathbb{R})$ and $\mathcal{F}\left({ }^{\mathrm{t}} T^{x} f\right)(\lambda)=\Phi_{-\lambda}(x) \mathcal{F} f(\lambda)$.

Let $f \in \mathcal{D}(\mathbb{R})$ and $g \in \mathcal{E}(\mathbb{R})$. The generalized convolution product of f and g is the function $f \# g \in \mathcal{E}(\mathbb{R})$ defined by:

$$
f \# g(x)=\int_{\mathbb{R}}{ }^{\mathrm{t}} T^{y} f(x) g(y) A(y) \mathrm{d} y, \quad x \in \mathbb{R}
$$

Theorem 4.2. (i) Let $f \in \mathcal{D}_{a}(\mathbb{R})$ and $g \in \mathcal{D}_{b}(\mathbb{R})$. Then $f \# g \in \mathcal{D}_{a+b}(\mathbb{R})$ and $\mathcal{F}(f \# g)(\lambda)=\mathcal{F}(f)(\lambda) \mathcal{F}(g)(\lambda)$.
(ii) For all $f, g \in \mathcal{D}(\mathbb{R})$, we have ${ }^{t} V(f \# g)={ }^{t} V f *^{t} V g$, where $*$ stands for the usual convolution on \mathbb{R}.
(iii) For all $f \in \mathcal{E}(\mathbb{R})$ and $g \in \mathcal{D}(\mathbb{R})$, we have $V\left(f *^{t} V g\right)=V(f) \# g$.

Remark 4.1. It is pointed out that all the results obtained in [4] may be recovered from those stated in the present work by simply taking $q=0$. As for Lions operators [3], it is believed that our transmutation operators will be of great utility in the study of integro-differential problems, and will lead to generalizations of various analytic structures on the real line.

Acknowledgements

The author is grateful to the referee for careful reading and useful comments.

References

[1] C.F. Dunkl, Integral kernels with reflection group invariance, Can. J. Math. 43 (1991) 1213-1227.
[2] J.-L. Lions, Équations d’Euler-Poisson-Darboux généralisées, C. R. Acad. Sci. Paris 246 (1958) 208-210.
[3] J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin, 1961.
[4] M.A. Mourou, K. Trimèche, Transmutation operators and Paley-Wiener associated with a singular differential-difference operator on the real line, Anal. Appl. 1 (1) (2003) 43-70.
[5] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur ($0, \infty$), J. Math. Pures Appl. 60 (1981) 51-98.

