

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebra/Group theory

A note on a characterization of generalized quaternion 2-groups *

Caractérisation des 2-groupes de quaternions généralisés

Yanheng Chen^{a,b}, Guiyun Chen^a

^a School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China
^b School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404100, PR China

ARTICLE INFO

Article history: Received 6 December 2013 Accepted after revision 23 April 2014 Available online 10 May 2014

Presented by the Editorial Board

ABSTRACT

In this note, we answer an open problem posed in M. Tărnăceanu (2010) [5], and obtain that the generalized quaternion 2-groups are the unique finite noncyclic groups whose posets of conjugacy classes of cyclic subgroups have breaking points.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RÉSUMÉ

Répondant à une question de M. Tărnăceanu (2010) [5], nous montrons que les 2-groupes de quaternions généralisés sont les seuls groupes finis non cycliques dont le treillis des classes de conjugaison de sous-groupes cycliques admet un point clivant.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let G be a finite group and L(G) be the subgroup lattice of G. A proper nontrivial subgroup H of G is called a *breaking* point for L(G) if and only if

for every $X \in L(G)$, we have $X \leq H$ or $X \geq H$.

Such subgroups have been studied in paper [1]. In paper [5], the author extended the concept to the poset of cyclic subgroups of a finite group, denoted by C(G), and proved that the generalized quaternion 2-groups are the only finite noncyclic groups whose posets of cyclic subgroups have breaking points. Further, also in the paper [5], the author generalized the concept again and extended it to the poset of conjugacy classes of cyclic subgroups of *G*, denoted by $\overline{C}(G) = \{[H]|H \in C(G)\}$. It seems that [*H*] being a breaking point of $\overline{C}(G)$ is weaker than the condition where *H* is a breaking point of C(G). And the author [5] remarked that for a finite *p*-group *G*, the poset $\overline{C}(G)$ possesses breaking points if and only if *G* is either a cyclic *p*-group of order at least p^2 or a generalized quaternion 2-group, and that for an arbitrary finite group *G*, the problem of

E-mail addresses: math_yan@126.com (Y. Chen), gychen@swu.edu.cn (G. Chen).

http://dx.doi.org/10.1016/j.crma.2014.04.009

^{*} This work was supported by National Natural Science Foundation of China (Grant Nos. 11271301, 11001226), and the Fundamental Research Funds for the Central Universities.

¹⁶³¹⁻⁰⁷³X/© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

characterizing the existence and the uniqueness of breaking points of $\overline{C}(G)$ remains still open. In this note, we will answer this open problem. Our main theorem proves that the generalized quaternion 2-groups exhaust all finite noncyclic groups whose posets of conjugacy classes of cyclic subgroups have breaking points.

Theorem 1.1. Let G be a finite group. Then the poset $\overline{C}(G)$ possesses breaking points if and only if G is either a cyclic p-group of order at least p^2 or a generalized quaternion 2-group.

Further, by Theorem 1.1 of [5], we can obtain that for a finite group *G*, two conditions, i.e. the poset C(G) has breaking points and the poset $\overline{C}(G)$ has breaking points, are equivalent.

The notation and terminologies are standard in this note, and the reader is referred to [3] for group theory and [4] for subgroup lattice theory if necessary.

2. The proof of Theorem 1.1

To prove the Theorem 1.1, we cite the following crucial Theorem 1 of paper [2], proved by using the classification of finite simple groups.

Theorem 2.1. Let *G* be a finite group acting transitively on a set Ω with $|\Omega| > 1$. Then there exists a prime *r* and an *r*-element $g \in G$ such that *g* acts without fixed points on Ω .

As we all know, a finite group can be generated by the representatives of all its conjugacy classes. Using Theorem 2.1, we can generalize this conclusion and obtain that a finite group can be generated by the representatives of all its conjugacy classes of prime power order elements. This is the following lemma.

Lemma 2.2. Let *G* be a finite group and *H* be a subgroup of *G*. Suppose that for each prime power order element, there exists some element $g \in G$ such that $x^g \in H$. Then G = H.

Proof. By the way of contradiction, assume that *H* is a proper nontrivial subgroup of *G*. Let Ω be the set of right cosets of *H* in *G*. Then $\Omega = \{Hg | g \in G\}$ and $|\Omega| > 1$. Considering the action of *G* on the set Ω , we have that *G* acts transitively on Ω , and so for each element $Hg \in \Omega$, the stabilizer G_{Hg} of Hg is equal to H^g . By hypothesis, since every element of prime power order of *G* is conjugate to an element of *H*, we get that each element of prime power order of *G* has a fixed point on the set Ω . On the other hand, in view of $|\Omega| > 1$ and *G* acting transitively on Ω , by Theorem 2.1 we have that there exists a prime power order element that acts fixed-point-free on Ω . Hence a contradiction is derived, and thus G = H. \Box

For convenience, we put a remark of the paper [5] about a finite *p*-group as the next lemma.

Lemma 2.3. Let *G* be a finite *p*-group. Then the poset $\overline{C}(G)$ possesses breaking points if and only if *G* is either a cyclic *p*-group of order at least p^2 or a generalized quaternion 2-group.

Proof of Theorem 1.1. Since the necessity is obvious, it is enough to prove the sufficiency. And by Lemma 2.3, it is sufficient to prove that *G* must be a group of prime power order.

Assume that *G* is not a group of prime power order. Then $|\pi(G)| > 1$, that is, |G| has at least two distinct prime divisors. Let [H] be a breaking point of $\overline{C}(G)$. By the definition of $\overline{C}(G)$, we have that for any $X \in C(G)$, there exists an element $g \in G$ satisfying that $X^g \leq H$ or $X^g \geq H$. It follows that |H| has more than two distinct prime divisors. Let $p \in \pi(G)$ and K be a cyclic p-subgroup of G. Then there exists an element $g \in G$ such that $K^g \leq H$ or $K^g \geq H$. Since $|\pi(H)| > 1$, we get $K^g \leq H$. Hence for every prime power order element $x \in G$, x is conjugate to an element of H. By Lemma 2.2, we have G = H, a contradiction with H < G. Therefore, G is a group of prime power order. \Box

By the results of Theorem 1.1, we easily obtain the following two corollaries.

Corollary 2.4. Let *G* be a finite group. Then the poset $\overline{C}(G)$ possesses a unique breaking point if and only if *G* is either a cyclic *p*-group of order p^2 or a generalized quaternion 2-group.

Corollary 2.5. The generalized quaternion 2-groups are the only finite noncyclic groups whose posets of conjugacy classes of cyclic subgroups have breaking points.

Comparing Theorem 1.1 with Theorem 1.1 of [5], we obtain the following corollary.

Corollary 2.6. Let G be a finite group. Then the poset C(G) has breaking points if and only if the poset $\overline{C}(G)$ has breaking points.

Acknowledgements

The authors would like to thank the reviewers with deep gratitude for their kindness and valuable suggestions which improved the first version of this note.

References

- G.G. Călugăreanu, M. Deaconescu, Breaking points in subgroup lattices, in: C.M. Campbell, E.F. Robertson, G.C. Smith (Eds.), Proceedings of Groups St. Andrews 2001 in Oxford, vol. 1, Cambridge University Press, Cambridge, UK, 2003, pp. 59–62.
- [2] B. Fein, W.M. Kantor, M. Schacher, Relative Brauer groups. II, J. Reine Angew. Math. 328 (1980) 39-57.
- [3] B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [4] M. Tărnăuceanu, Groups Determined by Posets of Subgroups, Ed. Matrix Rom, Bucuresti, Romania, 2006.
- [5] M. Tărnăuceanu, A characterization of generalized quaternion 2-groups, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 731-733.