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We analyze the problem of averaged observability and control of wave equations.
This topic is motivated by the control of parameter-dependent systems of wave equations.
We look for controls ensuring the controllability of the averages of the states with respect
to the parameter. This turns out to be equivalent to the problem of averaged observation
in which one aims at recovering the energy of the initial data of the adjoint system by
measurements done on its averages, under the assumption that the initial data of all the
components of the adjoint system coincide.
The problem under consideration is weaker than the classical notion of simultaneous
observation and control.
The method of proof uses propagation arguments based on H-measures or microlocal
defect measures that reduce the problem to non-standard unique-continuation issues.
Using transmutation techniques, we also derive some results on the averaged observation
and control of parameter-dependent heat equations.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On étudie le problème de l’observation et contrôle en moyenne d’équations des ondes.
Ce sujet est motivé par le contrôle d’équations des ondes dépendant de paramètres. On
s’intéresse à la contrôlabilité des moyennes des états par rapport aux paramètres. Ceci
équivaut au problème de l’observation des états adjoints dépendant des paramètres, mais
tous avec les mêmes données initiales, en utilisant l’observation des moyennes.
Le problème considéré est plus faible que celui de la contrôlabilité ou de l’observabilité
simultanées étudié antérieurement.
La méthode de démonstration s’appuie sur des arguments de propagation qui utilisent les
H-mesures ou mesures de défaut microlocales, qui réduisent le problème à des questions
de continuation unique.
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En utilisant des arguments de transmutation, on obtient aussi quelques résultats pour
le contrôle et l’observation en moyenne pour des équations paraboliques dépendant de
paramètres.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We analyze the problem of controlling the averaged value of a system of parameter-dependent wave equations by a single
control. The problem is relevant in applications in which the control has to be chosen independently of the parameter value,
in a robust manner.

This notion was previously introduced in [12] both in the context of finite-dimensional linear and PDE systems.
The problem is equivalent to that of averaged observability, in which we try to determine the energy of an initial datum

for the parameter-dependent wave equations, by means of simply observing their averages with respect to the parameter.
These notions are weaker than those of simultaneous control and observation ([6] and [1]). In simultaneous control, all

the wave equations, regardless of the value of the parameter, need to be controlled by the same control. In simultaneous
observation, the initial data of the solutions whose average is observed are supposed to depend arbitrarily on the parameter
and not all to be the same as when dealing with averaged observation.

Our main results of averaged observation and, by duality, of averaged control, employ tools of microlocal analysis, and,
more precisely, propagation arguments based on the use of microlocal defect measures or H-measures introduced inde-
pendently by P. Gérard [9] and L. Tartar [11].1 We refer the reader to the mentioned articles for the properties of these
measures (localization, propagation, etc.) used in this Note. Our methods are strongly inspired by those developed in earlier
works for the observation and control of hyperbolic equations [3,4] and [6], among others.

In the next section, we discuss the simplest case of a system of two distinct wave equations. Results on simultaneous
observability, together with the appropriate assumptions and relations to the existing results are given in Section 3. Us-
ing transmutation techniques, the results obtained for wave equations are then transferred to systems of heat equations
(Section 4). We close the paper by pointing towards some open problems and future directions of research.

2. Averaged observability

As mentioned above, we consider the case where the system under consideration only involves two modes, depending
on the velocity of propagation of solutions, denoted respectively by c1, c2 and u1, u2:

∂tt ui − div
(
ci(x)∇ui

) = 0, (t,x) ∈ R+ × Ω

ui(0, ·) = u0 ∈ L2(Ω)

∂t ui(0, ·) = ũ0 ∈ H−1(Ω), i = 1,2, (1)

where the space domain Ω is assumed to be a compact manifold without boundary. As for the coefficients entering the
system, we assume that they are bounded from below by a positive constant. Furthermore, if not stated otherwise, it is
assumed that c1 is of class C1,1, thus ensuring the well-posedness of the bicharacteristic flow of the corresponding wave
operator, while c2 is merely continuous.

We investigate the conditions under which one can recover the energy of the initial data, which are the same for both
components, by observing the average of solutions, θu1 + (1 − θ)u2, with a parameter θ ∈ 〈0,1].

The main result of this Note is as follows:

Theorem 2.1. Suppose the equations’ coefficients satisfy

c1(x) − c2(x) �= 0, x ∈ ω, (2)

where ω is an open subset of Ω and T is a time such that 〈0, T 〉 × ω satisfies the Geometric Control Condition (GCC, [5]) for the first
equation.

Then, for any θ ∈ 〈0,1] there exists a constant Cθ such that the following estimate holds

E(0) := ∥∥u0
∥∥2

L2 + ∥∥ũ0
∥∥2

H−1 ≤ Cθ

T∫
0

∫
ω

∣∣θu1 + (1 − θ)u2
∣∣2

dxdt. (3)

1 In the sequel, for simplicity, we shall use the terminology of H-measures.
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Remark 1. Several remarks are in order.

– The case θ = 1 holds trivially, as it coincides with the observability problem for a single equation, and corresponds to
the well-known result of [5].

– The theorem also holds, as well as its proof, if the system (1) is considered on a bounded, smooth domain Ω with
Dirichlet boundary conditions. Indeed, the localization property for H-measures used in the proof holds within any open
subdomain and is not affected by boundaries. Moreover, the propagation property of these measures also holds true in
this case thanks to the results of [3]. The reflection law of measures is simpler to achieve and is more intuitive when
the reflection is hyperbolic. In other words, a measure that vanishes along a bicharacteristic ray when getting to the
boundary transversally is reflected as being null along the reflected broken bicharacteristic. This allows fully extending
our results to the case of convex domains. For general domains, one needs to consider glancing and diffractive situations
as well.
Of course, all these technical difficulties disappear if the control acts on a neighborhood of the domain boundary.

– Note that this averaged observability result holds under, essentially, the condition that GCC is satisfied for the first
equation. No assumption is done on the velocity of propagation of the second equation (other than being merely
continuous and not coinciding with the first one in ω).

– The assumption (2) requires the coefficients to be distinct everywhere in the observation subset. This assumption is
not optimal since, for instance, the averaged observability inequality holds when c1 ≡ c2 everywhere because, then,
both solutions u1 and u2 coincide with its average. Obtaining sharp conditions on the coefficients for (3) to hold is an
interesting open problem.

– The constant Cθ can be taken to be uniform for θ ≥ θ∗ and θ∗ > 0.
– The result can be easily generalized to a system with any finite number of modes, all starting from the same data. In

that case the property (2) takes the form

c1(x) − ci(x) �= 0, x ∈ ω, i �= 1,

where ω satisfies the GCC in some time T > 0 for the i = 1. The coefficients are assumed to be continuous, except the
leading one, c1, which is assumed to be of class C1,1. Then for any averaging set of numbers θi ∈ [0,1], i = 1, ..., N such
that

∑
i θi = 1 and θ1 > 0, there exists a constant Cθ such that

E(0) ≤ Cθ

T∫
0

∫
ω

∣∣∣∣∣
N∑

i=1

θi∇ui

∣∣∣∣∣
2

dxdt.

Proof. We now present the sketch of the proof that uses compactness-uniqueness arguments, similar as in [3,6]. We proceed
in several steps.

Step 1. We first prove the following relaxed observability inequality with a compact reminder term.

Proposition 2.2. Under the assumptions of Theorem 2.1, for a suitable Cθ , it holds:

E(0) ≤ Cθ

( T∫
0

∫
ω

∣∣θu1 + (1 − θ)u2
∣∣2

dxdt + ∥∥u0
∥∥2

H−1 + ∥∥ũ0
∥∥2

H−2

)
. (4)

Proof. We argue by contradiction. Assuming the contrary, there exist sequences of initial conditions (u0n), (ũ0n), such that
the corresponding solutions un

1, un
2 satisfy:

En(0) > n

( T∫
0

∫
ω

∣∣θun
1 + (1 − θ)un

2

∣∣2
dxdt + ∥∥u0n

∥∥2
H−1 + ∥∥ũ0n

∥∥2
H−2

)
. (5)

Without loosing generality, we can assume that En(0) = 1.

Thus (5) implies that ‖u0n‖2
H−1 +‖ũ0n‖2

H−2 → 0, resulting in weak convergence of (u0n, ũ0n) −⇀ (0,0) in L2(Ω)×H−1(Ω).
Therefore the solutions (un

1, un
2) converge weakly to zero in L2(〈0, T 〉 × Ω) as well. In order to obtain a contradiction, we

have to show that the last convergence is strong, at least for one component, un
1 or un

2, since this will imply the strong

convergence to zero of the initial data, which is incompatible with the fact that En(0) = 1.
From the contradictory assumption (5), we have that the H-measure ν associated with a subsequence of (θun

1 +(1−θ)un
2)

vanishes on 〈0, T 〉 × ω. Furthermore, it is of the form

ν = θ2μ1 + (1 − θ)2μ2 + θ(1 − θ)2
μ12
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where, on the right-hand side, the elements of the matrix measure associated with the vector subsequence of (un
1, un

2) are
listed, with μ12 denoting the off-diagonal element.

The continuity of coefficients enables an application of the localization property for H-measures (e.g., [9, Corollary 2.2]),
which gives that each μ j is supported within the corresponding characteristic set {τ 2 − c j(x)ξ2 = 0}, j = 1,2. Due to the
separation of velocities (2), it follows that their supports are disjoint on the observability region. On the other hand, because
of the positive semi-definiteness of matrix H-measures, off-diagonal entries are dominated by the corresponding diagonal
elements. More precisely, it holds that suppμ12 ⊆ suppμ1 ∩ suppμ2, implying that μ12 = 0 on the observability region.

Thus we get that

ν = θ2μ1 + (1 − θ)2μ2 = 0 on 〈0, T 〉 × ω.

As μ1 and μ2 are positive measures and θ > 0, it follows that μ1 vanishes on 〈0, T 〉 × ω as well. Using the regularity
assumption on c1 and taking into account that 〈0, T 〉 × ω satisfies the GCC for the problem (1) with i = 1, the propagation
property for H-measures (e.g., [11, Theorem 3.12]) gives that μ1 vanishes everywhere, implying strong convergence (to zero)
of solutions un

1 in L2((0, T ) × Ω). The last convergence implies strong convergence to zero of initial data in L2(Ω)×H−1(Ω),
and thus we get a contradiction with the assumption of the constant, non-zero initial energy. �

Step 2. Here we follow a classical compactness-uniqueness procedure of reducing the observability for low frequencies
to an elliptic unique continuation result [5].

Let N(T ) be a subspace of L2(Ω) × H−1(Ω), consisting of initial data for which the average of solutions to (1) vanishes
on the observability region:

N(T ) := {(
u0, ũ0) ∈ L2(Ω) × H−1(Ω)

∣∣ θu1 + (1 − θ)u2 = 0, on 〈0, T 〉 × ω
}
.

Based on the relaxed observability inequality (4), it follows that N(T ) is a finite-dimensional space. Furthermore, the fol-
lowing characterization holds.

Lemma 2.3. N(T ) = {0}.

Proof. Using that N(T ) is of finite dimension and the fact that the coefficients in the equations under consideration are
time-independent, one gets that N(T ) contains a vector (u0,−λu0), where u0 is an eigenfunction of both Laplace operators
−div(ci∇), i = 1,2, under consideration, associated with a same eigenvalue λ.

By the definition of N(T ), it follows θu1(0) + (1 − θ)u2(0) = u0 = 0 on ω. Being an eigenfunction of the elliptic operator
with C1,1 coefficient c1, the classical unique continuation results (e.g., [10, Theorem 3]) imply u0 = 0 everywhere. �

Step 3. Combining the two previous results, and using the contradiction argument in the same manner as in the proof
of Proposition 2.2, one easily obtains the strong observability inequality (3). �

The observability inequality (3) above is equivalent to a property of averaged control for a linear combination of solutions
of the same wave system in the presence of a single control acting on all the components of the system simultaneously (see
[12]):

∂tt vi − div(ci∇vi) = χ〈0,T 〉×ω f , (t,x) ∈ R+ × Ω

vi(0, ·) = v0
i ∈ H1(Ω)

∂t vi(0, ·) = ṽ0
i ∈ L2(Ω), i = 1,2, (6)

with f ∈ L2(R+ × Ω). More precisely, the following result holds.

Theorem 2.4. For any choice of initial data of the system (6), any positive constants α and β , and any final target (v T , ṽ T ) ∈ H1(Ω)×
L2(Ω) there exists a control f such that

(αv1 + βv2)(T , ·) = v T , ∂t(αv1 + βv2)(T , ·) = ṽ T .

Note that unlike the system (1), the initial data for two components in (6) are not correlated.

Remark 2. Proposition 2.2 also holds, under the same conditions of the coefficients c1 and c2 if, instead of the same initial
data for the two equations entering in the system (1), one assumes that they are related by a bounded linear operator.
However, in order to deduce the strong observability inequality (3), one has to adjust the proof of Lemma 2.3, which
requires the unique continuation result to hold for an average of eigenfunctions associated with different elliptic operators.
Such generalization can be obtained in two settings: either it is additionally assumed that coefficients ci are analytic and
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separated on the whole domain Ω , or the linear operator linking the data of both solutions is such that whenever ((θu1(0)+
(1 − θ)u2(0))|ω = 0) then (u1(0)|ω = u2(0)|ω = 0). In addition, in the latter case, we have to require C1,1 regularity on all
coefficients, to ensure the unique continuation for each elliptic equation.

By duality, this corresponds to controlling a suitable linear combination of both solutions.

3. Simultaneous observability

We reconsider the system (1) but with initial data depending on the parameter:

∂tt ui − div
(
ci(x)∇ui

) = 0, (t,x) ∈ R+ × Ω

ui(0, ·) = u0
i ∈ L2(Ω)

∂t ui(0, ·) = ũ0
i ∈ H−1(Ω), i = 1,2. (7)

Proceeding similarly as above, one obtains the following result.

Theorem 3.1. Suppose the coefficients of (7) are analytic and satisfy c1(x) − c2(x) �= 0, x ∈ Ω . Let ω be an open subset of Ω that
satisfies the GCC in some time T > 0 for both problems in (1). Then, for any θ ∈ 〈0,1〉, there exists a constant Cθ such that the following
estimate holds:

E1(0) + E2(0) ≤ Cθ

T∫
0

∫
ω

∣∣θu1 + (1 − θ)u2
∣∣2

dxdt.

As already stated in Remark 1, stronger assumptions on coefficients stated above are related to the unique continuation
problem for an average θu0

1 + (1 − θ)u0
2 of eigenfunctions associated with the elliptic operators considered in (7).

This result of simultaneous observability requires the GCC condition to be satisfied by both systems and not only by one
of them as in the previous section. The corresponding dual problem consists of controlling each individual component of
the system (6) by means of the same control. These results are closely related to those in [1,6].

4. The heat equation

By using transmutation techniques as developed in [7], the results above can be employed to derive null controllability
and observability properties for parameter-dependent parabolic equations as well:

∂t zi − div
(
ci(x)∇zi

) = 0, (t,x) ∈ R+ × Ω

zi(0, ·) = z0
i ∈ L2(Ω), i = 1,2. (8)

Using transmutations out of the solutions of the heat equations above, we can define:

ui(s,x) =
∫

R+
k(t, s)zi(t,x)dt,

where the kernel k is given by

k(t, s) = 1√
4πt

sin

(
sS

4t

)
e

s2−S2
4t ,

and S > 0 is arbitrary, to get solutions ui of the wave equations with the same coefficients.
Applying the above results on simultaneous observation, one gets the following:

Corollary 4.1. Assume the assumptions of Theorem 3.1 are satisfied. Then, for any T̃ > 0 and θ ∈ 〈0,1〉 there exists a constant Cθ,T̃
such that the following estimate holds:

∑
i

∞∫
0

e− S2
2t

∥∥zi(t, ·)
∥∥2

L2 dt ≤ Cθ,T̃

T̃∫
0

∫
ω

∣∣(θ z1 + (1 − θ)z2
)
(t,x)

∣∣2
dxdt. (9)

This corollary enables one to estimate the energy of the system (8) at an arbitrary strictly positive time, namely,
‖z1(T̃ , ·)‖L2 + ‖z2(T̃ , ·)‖L2 . However, its initial energy at time t = 0 can not be recovered from (9) because of the time-
irreversibility of the heat equations under consideration.
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The assumption on the set ω to satisfy the GCC could seem to be unnatural, since for scalar heat equations no geometric
conditions are needed for observability/controllability to hold. But this is the first result in this direction, and it differs from
so far considered problems on simultaneous control of heat like equations in which, most often, the principal part of the
differential equations entering the heat equations of the system are assumed to be the same (see [2]).

5. Conclusion

The results presented above can also be generalized to the case where the system under consideration involves an in-
finite number of equations depending on a parameter, either discrete, or even continuous. Such generalizations are not
straightforward, and one has to pay special attention to the arguments based on the localization property for H-measures.
In particular, when averaging an infinite number of sequences, the measure associated with the average does not have nec-
essarily to be supported within the set containing the supports of all H-measures associated with each particular sequence,
which disables the arguments used in the proof of Proposition 2.2. Similarly, the condition on the separation of velocities
requires more detailed analysis. This issue will be analyzed in a forthcoming work.

The results we have presented on parabolic equations are the first ones of that type. It would be interesting to see
if Carleman inequalities, which are the tool that is most efficiently used to analyze observability problems for parabolic
equations (see [8]), can be directly applied to address these issues.

Acknowledgements

This paper has mainly been developed while the first author was a Postdoctoral Fellow on the Basque Center for Ap-
plied Mathematics (Bilbao, Spain) within the FP7-246776 NUMERIWAVES project. Also supported in part by the Ministry
of Science, Education and Sports of the Republic of Croatia (project 037-0372787-2795). This work was completed while
the second author was visiting the CIMI – Toulouse in the context of the Excellence Chair in “PDE, Control and Numer-
ics”. E. Zuazua was also partially supported by Grants MTM2008-03541 and MTM2011-29306 of MICINN, Spain, Project
PI2010-04 of the Basque Government, ERC Advanced Grant FP7-246775 NUMERIWAVES and ESF Research Networking Pro-
gramme OPTPDE.

The authors acknowledge Belhassen Dehman for a fruitful discussion, and the referee for the remarks that have improved
the final version of the paper.

References

[1] F. Alabau-Boussouira, M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. 99 (5) (2013)
544–576.

[2] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey,
Math. Control Relat. Fields 1 (3) (2011) 267–306.

[3] N. Burq, Contrôle de l’équation des ondes dans des ouverts peu réguliers, Asymptot. Anal. 14 (2) (1997) 157–191.
[4] N. Burq, P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris, Ser. I. 325 (7) (1997) 749–752.
[5] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control

Optim. 30 (5) (1992) 1024–1065.
[6] B. Dehman, M. Léautaud, J. Le Rousseau, Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal. 211 (1)

(2014) 113–187.
[7] S. Ervedoza, E. Zuazua, Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal. 202 (3) (2011) 975–1017.
[8] E. Fernández-Cara, E. Zuazua, The cost of approximate controllability for heat equations: the linear case, Adv. Differ. Equ. 5 (4–6) (2000) 465–514.
[9] P. Gérard, Microlocal defect measures, Commun. Partial Differ. Equ. 16 (11) (1991) 1761–1794.

[10] L. Hörmander, On the uniqueness of the Cauchy problem. II, Math. Scand. 7 (1959) 177–190.
[11] L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. R. Soc. Edinb. A 115 (3–4)

(1990) 193–230.
[12] E. Zuazua, Averaged control, preprint, http://www.bcamath.org/documentos_public/archivos/publicaciones/averaged-zuazua2.pdf, 2013.

http://refhub.elsevier.com/S1631-073X(14)00112-5/bib41424Cs1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib41424Cs1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib4142474254s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib4142474254s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib4275723937s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib42473937s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib424C52s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib424C52s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib444C52s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib444C52s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib455As1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib46435As1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib476572s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib486F72s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib546172s1
http://refhub.elsevier.com/S1631-073X(14)00112-5/bib546172s1
http://www.bcamath.org/documentos_public/archivos/publicaciones/averaged-zuazua2.pdf

	Averaged control and observation of parameter-depending wave equations
	1 Introduction
	2 Averaged observability
	3 Simultaneous observability
	4 The heat equation
	5 Conclusion
	Acknowledgements
	References


