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In this note, we report on our work on the formalism of the Grothendieck six operations
on o-minimal sheaves. As an application to the theory of definable groups, we see that
the cohomology of a definably compact group with coefficients in a field is a connected,
bounded, Hopf algebra of finite type.
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r é s u m é

Dans cette note, nous esquissons notre travail sur le formalisme des six opérations de
Grothendieck sur les faisceaux o-minimaux. En tant qu’application à la théorie des groupes
définissables, nous montrons que la cohomologie d’un groupe définissablement compact
avec coefficients dans un corps est une algèbre de Hopf connexe, bornée, de type fini.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Complete supports on definable spaces

Let M = (M,<, (c)c∈C, ( f ) f ∈F , (R)R∈R) be a fixed o-minimal structure with definable Skolem functions. In the rest of
the note we shall work in the category of definable spaces with definable continuous maps (cf. [4]), which we denote by Def.

A definable space X is definably normal if for every disjoint closed definable subsets Z1 and Z2 of X , there are disjoint
open definable subsets U1 and U2 of X such that Zi ⊆ Ui for i = 1,2.

Let X be a definable space and K ⊆ X a definable subset. We say that K is definably compact (cf. [13]) if every definable
curve α : (a,b) → K is completable in K (i.e. limits in a+ and b− exist in K ). With this definition, we have that a definable
set X ⊆ Mn with its induced topology is definably compact if and only if it is closed and bounded in Mn . A definable space
is definably completable if it can be definably immersed as an open dense subset of a definably compact space.

A continuous definable map f : X → Y between definable spaces X and Y is called definably proper if for every definably
compact definable subset K of Y , its inverse image f −1(K ) is a definably compact definable subset of X . If we assume that
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the spaces X and Y are Hausdorff and locally definably compact (i.e. every point has a definably compact neighborhood),
then f : X → Y is definably proper if and only if f : X → Y is universally closed and separated in the category Def.

The category D̃ef is the category whose objects are of the form X̃ , the o-minimal spectrum of X (cf. [14]), where X is an
object of Def and the morphisms are of the form f̃ : X̃ → Ỹ , the o-minimal spectrum of a morphism f : X → Y of Def. If
Z is a definable subset of X , then Z̃ is said to be constructible. The functor just defined Def → D̃ef is an isomorphism of
categories, so under the assumptions mentioned above we have: (i) f̃ : X̃ → Ỹ is proper in D̃ef (i.e. universally closed and
separated in the category D̃ef) if and only if f : X → Y is definably proper; (ii) X̃ is complete (i.e. the projection X̃ → {pt} is
proper in D̃ef) if and only if X is definably compact.

As it is well known, a model S of the first-order theory of M over M determines a functor Def → Def(S) sending a
definable space X to the S-definable space X(S) and a continuous definable map f : X → Y to the continuous S-definable
map f S : X(S) → Y (S). Let f̃ : X̃ → Ỹ be a morphism in D̃ef, α ∈ Ỹ , a |� α a realization of α and S a prime model of the
first-order theory of M over {a}∪ M . For each object X̃ of D̃ef, we have a restriction map r : X̃(S) → X̃ . A fundamental result

of [1] states that the restriction r induces a homeomorphism ˜( f S)−1(a) → f̃ −1(α). This allows us to make the following
definition.

Definition 1.1. The family of complete supports on ˜( f S)−1(a), denoted c, is the family of all closed subsets A with A ⊆ Z̃ for

some closed complete constructible subset Z̃ of ˜( f S)−1(a).
The family of complete supports on f̃ −1(α), still denoted c, is the inverse image by r of the family of complete supports on
˜( f S)−1(a).

If X is definably completable by a definably normal definable space, then the family c becomes filtrant (i.e. for very C ∈ c
and every neighborhood V of C there is a neighborhood U of C in V with U ⊆ V and U ∈ c).

2. Proper direct image

Let A be a commutative ring with finite weak global dimension and denote by Mod(A X ) the category of sheaves of
A-modules on a topological space X . (We refer to [2,9] for classical sheaf theory.)

Below we will work in the category D̃ef and omit the tilde for simplicity. Let f : X → Y be a morphism in Def and let
F ∈ Mod(A X ). We note that by [5], Mod(A X ) is equivalent to the category of sheaves on the o-minimal site on the definable
space corresponding to X , and o-minimal sites generalize the semi-algebraic site on semi-algebraic spaces (cf. [3]) and the
sub-analytic site on globally sub-analytic sets (cf. [10,15]).

Definition 2.1. The proper direct image is the subsheaf of f∗ F defined by setting for every open constructible subset U of Y

Γ (U ; f�. F ) = lim−→
Z

ΓZ
(

f −1(U ); F
)
,

where Z ranges through the family of closed constructible subsets of f −1(U ) such that f |Z : Z → U is proper.

The functor f�. is well defined, stable under composition and left exact. If f : X → Y is proper, then f �. = f∗; if f : X → Y

is the inclusion of a locally closed subset, then f �. is the extension by zero functor; if we consider the morphism aX : X →
{pt}, then we have aX�. F 	 Γc(X; F ) (sections with complete support).

In order to compute the fiber formula, we shall work in (the tilde of) a full subcategory A of the category Def such that:

(A0) every locally closed definable subset of an object of A is an object of A;
(A1) every object of A is definably normal (in fact completely definably normal);
(A2) every object of A is definably completable in A.

We have the following fiber formula: let α ∈ Y . Then

( f�. F )α 	 Γc
(

f −1(α); F
) 	 Γc

((
f S

)−1
(a); r−1 F

)
. (1)

Consider a fiber f −1(α) of a morphism f : X → Y in Def and let c be the family of complete supports on f −1(α).
A sheaf F on f −1(α) is c-soft if and only if the restriction Γ ( f −1(α); F ) → Γ (K ; F ) is surjective for every K ∈ c.

Definition 2.2. Let f : X → Y be a morphism in Def and let F be a sheaf in Mod(A X ). We say that F is f -soft if for any
α ∈ Y its restriction F | f −1(α) is c-soft in Mod(A f −1(α)).
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Let F ∈ Mod(A X ). Using the fiber formula (1) and the work in [7] we obtain the following properties:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f -soft sheaves are cogenerating;
f�. has finite cohomological dimension (in our case Rk f�. F = 0 if k > dimX);
f -soft sheaves are f�.(•)-acyclic (i.e. Rk f�. F = 0, k 
= 0 if F is f -soft);
f -soft sheaves are stable under small ⊕;
f�. commutes with small ⊕ .

(2)

3. Fundamental formulas

For some of our results about the proper direct image (base change formula, Künneth formula), we will also require that:

(A3) f : X → Y is a morphism in Def and if u ∈ Y , then for every elementary extension S of M and every F ∈ Mod(A Xdef),
we have an isomorphism

H∗
c

(
f̃ −1(u); F̃ | f̃ −1(u)

) 	 H∗
c

((̃
f S

)−1
(u); F̃ (S)

|̃( f S)
−1

(u)

)
,

where F̃ (S) = r−1 F̃ and r : X̃(S) → X̃ is the restriction.

Categories A satisfying also (A3) include: (i) regular, locally definably compact definable spaces in o-minimal expansions
of real closed fields; (ii) Hausdorff locally definably compact definable spaces in o-minimal expansions of ordered groups
with definably normal completions; (iii) locally closed definable subspaces of Cartesian products of a given definably com-
pact definable group in an arbitrary o-minimal structure (for this case we have a weaker version of (A1) which is enough
for the applications).

Theorem 1 (Projection formula). Let f : X → Y be a morphism in A. Let F ∈ D+(A X ) and G ∈ D+(AY ). Then there is a natural
isomorphism:

R f�. F ⊗ G 	 R f�. (F ⊗ f −1G).

Consider a Cartesian square in A where δ = f ◦ g′ = g ◦ f ′

X ′ f ′

g′ δ

Y

g

X
f

Y ′

Theorem 2 (Base change formula). Suppose that f : X → Y satisfies (A3). Then there is a natural isomorphism in D+(AY ), functorial
in F ∈ D+(A X ):

g−1 ◦ R f�. F 	 R f ′�. ◦ g′−1 F .

Theorem 3 (Künneth formula). Suppose that f : X → Y satisfies (A3). Then For F ∈ D+(A X ) and G ∈ D+(AY ′ ) there is a natural
isomorphism:

Rδ�.
(

g′−1 F ⊗ f ′−1G
) 	 R f�. F ⊗ Rg�. G.

When Y ′ = pt, X ′ = X × Y and the maps f , f ′, g, g′ are the projections, as a special case of the Künneth formula we
obtain:

Hk
c (X × Y ; A X×Y ) 	

⊕
p+q=k

(
Hq

c (X; A X ) ⊗ H p
c (Y ; AY )

)
, k ∈ Z.

Let f : X → Y be a morphism in A. As a consequence of (2) and the Brown representability (cf. [11])

Theorem 4 (Verdier duality). The derived functor f
�. : D+(AY ) → D+(A X ) is well defined and it is the right adjoint to R f �. : D+(A X ) →

D+(AY ).



458 M.J. Edmundo, L. Prelli / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 455–458
In particular, we obtain the global Poincaré–Verdier duality (cf. [7]). Here a
�.
X A X is the dualizing complex and F varies

through Db(A X ). There is a natural isomorphism:

R Hom
(

F ,a
�.
X A

) 	 R Hom
(

RΓc(X; F ), A
)
.

4. Application to definable groups

Let M be an arbitrary o-minimal structure and k a field. Let X be an object of Def. A result of classical sheaf theory
(cf. [2]) states that there is a cup product operation

∪ : H p(X;kX ) ⊗ Hq(X;kX ) → H p+q(X;kX )

making H∗(X;kX ) into a graded, associative, skew-commutative k-algebra with unit in H0(X;kX ). This product is functorial
and the algebra is connected if X is definably connected. In combination with the cohomological results from [5,8], just like
in [6], we also find the following application to the theory of definable groups (cf. [12]).

Theorem 5. Suppose that M is an arbitrary o-minimal structure. Let k be a field. If G is a definably connected, definably compact
definable group, then the o-minimal sheaf cohomology H∗(G;kG ) of G with coefficients in k is a connected, bounded, Hopf algebra
over k of finite type.
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