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We prove that vertex-reinforced random walk on Z with weight of order kα , for α ∈
[0,1/2), is recurrent. This confirms a conjecture of Volkov for α < 1/2. The conjecture
for α ∈ [1/2,1) remains open.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On démontre que toute marche aléatoire renforcée par sommets sur Z avec poids de l’ordre
de kα , pour α ∈ [0,1/2), est récurrente. Ce résultat confirme une conjecture de Volkov pour
α < 1/2. La conjecture reste ouverte pour α ∈ [1/2,1).

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Linearly vertex-reinforced random walk (VRRW for short), introduced by Pemantle [3], was studied on Z by Pemantle
and Volkov [4]. A striking phenomenon was proved for this model [4,7]: the random walk will eventually visit just 5 sites
on Z almost surely.

In contrast, Volkov later in [8] studied non-linear vertex reinforced random walk on Z with some weight function
w : {0,1,2, . . .} → (0,∞). This process, denoted by (Xn,n ≥ 0), is defined as follows. Fix X0 = 0. Then for all n ≥ 0,

P(Xn+1 = Xn ± 1 | X1, . . . , Xn) = w(Zn(Xn ± 1))

w(Zn(Xn − 1)) + w(Zn(Xn + 1))
, (1)

where Zn(y) = #{m ≤ n : Xm = y} is the local time in y ∈ Z at time n. For w(k) = kα(c + o(1)), α ≥ 0, Volkov proved the
existence of a phase transition for this model. That is, there is a large time T0 such that after T0, the walk visits 2,5 or ∞
sites when α > 1, α = 1 and α < 1 respectively. In the case of α < 1, though it was proved that the random walk will visit
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infinitely many sites, it is not clear whether it will visit every site of Z infinitely many times with probability 1. Namely,
the question whether the random walk is recurrent1 was left open.

Recently, Schapira was able to move one step further towards a positive answer to this question, and in [5] proved a 0–1
law for VRRW on Z with weight of order kα , for α ∈ [0,1/2). In this paper, we show that in this regime the walk is in fact
recurrent.

Theorem. Vertex-reinforced random walk on Z with weight w(k) ≈ kα , α ∈ [0,1/2), is recurrent.

The notation w(k) ≈ kα means that the ratio between the two quantities is bounded between two constants independent
of k (except for w(0), on which we make no requirements).

The proof of the theorem consists of a martingale argument, which is a modification of a similar martingale argument
used in [1] for edge-reinforced random walk on Z. Another ingredient of the proof is the fact that for small α, the random
walk will not visit the nearby sites too many times before moving to a new site (see Lemma 2). This fact was basically
proved by Schapira via a kind of domino principle. This is the part of the proof that only works for 0 ≤ α < 1/2.

Let us remark that Arvind Singh [6] arrived at a similar result simultaneously, using a martingale argument similar in
spirit but different in some technical details.

2. Proof

Recall the definition of Zi( j). For all i ∈ N, we define a sequence of random variables Fi : Z \ {0} → R
+

Fi(v) =
⎧⎨
⎩

∑v−1
j=0

1
w(Zi( j))·w(Zi( j+1))

if v > 0;
∑−1

j=v
1

w(Zi( j))·w(Zi( j+1))
if v < 0.

(2)

Note that Fi(·) depends on the history of the random walk up to time i and is Fi-measurable where Fi is the σ -field
spanned by X1, . . . , Xi . Then we have the following lemma.

Lemma 1. Let X0 = 0. Let T = min{i > 0 : Xi = 0} i.e. the first time the process returns to the origin. Then {Fmin(T ,i)(Xmin(T ,i)) : i =
1,2, . . .} is a supermartingale.

Proof. We think about moving from Fi(Xi) to Fi+1(Xi+1) as being composed of two steps: moving X and updating the
weights. We will prove that Fi satisfies the following two properties:

(i) harmonicity: for all i ∈N, with respect to the random walk’s transition probability at time i, Fi(v) is harmonic (in v) on
Z \ {0}. In other words, the first step is a martingale;

(ii) monotonicity: for any fixed v ∈ Z \ {0}, Fi(v) is monotone decreasing in i.

Let us prove (i). We condition on Fi , and denote v = Xi for brevity, and assume v > 0 (the other case is similar). We get:

E
(

Fi(Xi+1)
∣∣ Fi

) = P(Xi+1 = v + 1)Fi(v + 1) + P(Xi+1 = v − 1)Fi(v − 1)

= w(Zi(v + 1))

w(Zi(v − 1)) + w(Zi(v + 1))

v∑
j=0

1

w(Zi( j)) · w(Zi( j + 1))

+ w(Zi(v − 1))

w(Zi(v − 1)) + w(Zi(v + 1))

v−2∑
j=0

1

w(Zi( j)) · w(Zi( j + 1))

=
v−2∑
j=0

1

w(Zi( j)) · w(Zi( j + 1))
+ w(Zi(v + 1))

w(Zi(v − 1)) + w(Zi(v + 1))

·
(

1

w(Zi(v − 1)) · w(Zi(v))
+ 1

w(Zi(v)) · w(Zi(v + 1))

)

=
v−1∑
j=0

1

w(Zi( j)) · w(Zi( j + 1))
= Fi(v).

1 The definition of recurrence we use here is that the random walk visits every vertex of Z infinitely many times almost surely and the definition of
transience is that the random walk visits every vertex of Z finitely many times almost surely.
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Hence, we proved (i); (ii) follows from the fact that for fixed j, Zi( j), the random walk’s local time is monotone increasing
in time i.

Now by harmonicity and monotonicity of Fi(v), one has:

E
(

Fi+1(Xi+1)
∣∣ Fi

) ≤ E
(

Fi(Xi+1)
∣∣ Fi

) = Fi(Xi),

so Fi(Xi) is a supermartingale. �
Remark. Lemma 1 holds more generally for any vertex-reinforced random walk on Z with increasing weight sequence. In
fact, it holds for any self-interacting process where the vertex weights are increasing, and Z may be replaced with any tree
(also remarked in [2]).

To prove the theorem, we need a second lemma. Let Tn denote the hitting time of a vertex n ∈ Z. Then,

Lemma 2. Almost surely, I := lim infn→∞ ZTn (n − 1) < ∞.

Proof. The claim is equivalent to showing

lim
k→∞

P

(
lim inf
n→∞ ZTn (n − 1) > k

)
= 0. (3)

Note that for any fixed k

P

(
lim inf
n→∞ ZTn (n − 1) > k

)
= P

(⋃
N≥0

⋂
n≥N

{
ZTn (n − 1) > k

})

= sup
N≥0

P

(⋂
n≥N

{
ZTn (n − 1) > k

})

≤ sup
N≥0

P
(

ZT N (N − 1) > k
)
.

We now apply formula (4.3) in [5], which claims that

sup
N≥0

P
(

ZT N (N − 1) > k
) ≤ Ce−ckc

, (4)

where c and C are some positive constants (possibly depending on the weight w). Hence, (3) follows from (4). This con-
cludes the proof of the lemma. �

By the same argument as the proof of Lemma 2, one can prove the same behavior in the negative direction i.e.
lim infn→−∞ ZTn (n + 1) < ∞.

Finally, we also use the 0–1 law proved by Schapira, which is stated as follows.

Lemma 3. (See [5], Theorem 1.1.) Vertex-reinforced random walk on Z with weight w(k) ≈ kα , k ≥ 1 for some α ∈ [0,1/2), is either
recurrent or transient.

Proof of the theorem. By Lemma 3, we know that Xn is either recurrent or transient. Now suppose that Xn is transient,
then Xn will visit the origin just finitely many times almost surely. By Lemma 1, Fi(Xi) will be a supermartingale eventually.
Since it is positive, it converges to a finite random variable almost surely. On the other hand, by Lemma 2 there will be
infinitely many vertices N , such that the increment of Fi(Xi) at time T N is bounded from below by a positive random
variable. Indeed, the only update to Z that happens at time T N is the increase of Z(N) to 1, but Z(N) does not appear in
the sum defining F Tn−1. Hence

F Tn (XTn ) − F Tn−1(XTn−1) = 1

w(ZT N (N − 1))w(1)
≥ 1

w(I)w(1)
> 0

(where I is still lim infn→∞ ZTn (n − 1) < ∞). This contradicts the convergence of Fi(Xi). Therefore, we can conclude the
theorem. �
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