

Combinatorics

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Bounds on the vertex-edge domination number of a tree

Bornes sur le nombre de domination sommet-arête d'un arbre

Balakrishna Krishnakumari^a, Yanamandram B. Venkatakrishnan^a, Marcin Krzywkowski^{b,c,1,2}

^a Department of Mathematics, SASTRA University, Tanjore, Tamil Nadu, India

^b Department of Mathematics, University of Johannesburg, South Africa

^c Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland

ARTICLE INFO

Article history: Received 22 November 2013 Accepted after revision 18 March 2014 Available online 3 April 2014

Presented by the Editorial Board

ABSTRACT

A vertex-edge dominating set of a graph *G* is a set *D* of vertices of *G* such that every edge of *G* is incident with a vertex of *D* or a vertex adjacent to a vertex of *D*. The vertex-edge domination number of a graph *G*, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of *G*. We prove that for every tree *T* of order $n \ge 3$ with *l* leaves and *s* support vertices, we have $(n - l - s + 3)/4 \le \gamma_{ve}(T) \le n/3$, and we characterize the trees attaining each of the bounds.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Un ensemble sommet–arête dominant d'un graphe *G* est un ensemble *D* de sommets de *G* tel que chaque arête de *G* soit incidente à un sommet de *D* ou à un sommet adjacent à un sommet de *D*. Le nombre de domination sommet–arête d'un graphe *G*, noté $\gamma_{ve}(T)$, est le cardinal minimum d'un ensemble sommet–arête dominant de *G*. Nous prouvons que, pour chaque arbre *T* d'ordre $n \ge 3$ avec *l* feuilles et des sommets *s* de soutien, que nous avons $(n - l - s + 3)/4 \le \gamma_{ve}(T) \le n/3$, et nous caractérisons les arbres atteignant chacune des limites.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G): uv \in E(G)\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). We denote by P_n the path on n vertices. Let T be a tree, and let v be a vertex of T. We say that v is adjacent to a path P_n if there is a neighbor of v, say x, such that the subtree

http://dx.doi.org/10.1016/j.crma.2014.03.017

E-mail address: marcin.krzywkowski@gmail.com (M. Krzywkowski).

¹ Research fellow at the Department of Mathematics, University of Johannesburg, South Africa.

² Research partially supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

resulting from T by removing the edge vx and which contains the vertex x as a leaf, is a path P_n . By a star we mean a connected graph in which exactly one vertex has degree greater than one.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \setminus D$ has a neighbor in D. The domination number of G is the minimum cardinality of a dominating set of G. For a comprehensive survey of domination in graphs, see [2,3].

An edge $e \in E(G)$ is vertex-edge dominated by a vertex $v \in V(G)$ if e is incident to v, or e is adjacent to an edge incident to v. A subset $D \subseteq V(G)$ is a vertex-edge dominating set, abbreviated VEDS, of G if every edge of G is vertex-edge dominated by a vertex of D. The vertex-edge domination number of G, denoted by $\gamma_{ve}(G)$, is the minimum cardinality of a vertex-edge dominating set of G. A vertex-edge dominating set of G of minimum cardinality is called a $\gamma_{ve}(G)$ -set. Vertex-edge domination in graphs was introduced in [7], and further studied in [6].

Chellali and Haynes [1] established the following lower bound on the total domination number of a tree. For every tree *T* of order *n* with *l* leaves, we have $\gamma_t(T) \ge (n - l + 2)/2$. They also characterized the extremal trees. In [4] a lower bound on the total outer-independent domination number of a tree was given together with the characterization of the extremal trees. Lemańska [5] proved that the domination number of a tree is bounded below by (n - l + 2)/3.

We prove the following bounds on the vertex–edge domination number of a tree *T* of order $n \ge 3$ with *l* leaves and *s* support vertices, $(n - l - s + 3)/4 \le \gamma_{ve}(T) \le n/3$. We also characterize the trees attaining each of the bounds.

2. Results

We begin with the following straightforward observation.

Observation 1. For every connected graph G of diameter at least two, there exists a $\gamma_{ve}(G)$ -set that contains no leaf.

First we show that if *T* is a nontrivial tree of order *n* with *l* leaves and *s* support vertices, then $\gamma_{ve}(T)$ is bounded below by (n - l - s + 3)/4. For the purpose of characterizing the trees attaining this bound, we introduce a family \mathcal{T} of trees $T = T_k$ that can be obtained as follows. Let T_1 be a path P_5 . If *k* is a positive integer, then T_{k+1} can be obtained recursively from T_k by one of the following operations.

- Operation \mathcal{O}_1 : Attach a vertex by joining it to any support vertex of T_k .
- Operation O_2 : Attach a path P_2 by joining one of its vertices to a vertex of T_k , which is not a leaf and is adjacent to a support vertex of degree two.
- Operation \mathcal{O}_3 : Attach a path P_4 by joining one of its leaves to a leaf of T_k adjacent to a weak support vertex.

We now prove that for every tree *T* of the family \mathcal{T} we have $\gamma_{ve}(T) = (n - l - s + 3)/4$.

Lemma 2. If $T \in T$, then $\gamma_{ve}(T) = (n - l - s + 3)/4$.

Proof. We use the induction on the number *k* of operations performed to construct the tree *T*. If $T = T_1 = P_5$, then $(n - l - s + 3)/4 = (5 - 2 - 2 + 3)/4 = 1 = \gamma_{ve}(T)$. Let *k* be a positive integer. Assume that the result is true for every tree $T' = T_k$ of the family \mathcal{T} constructed by k - 1 operations. Let *n'* be the order of the tree *T'*, *l'* the number of its leaves, and *s'* the number of support vertices. Let $T = T_{k+1}$ be a tree of the family \mathcal{T} constructed by *k* operations.

First assume that *T* is obtained from *T'* by operation \mathcal{O}_1 . We have n = n' + 1, l = l' + 1 and s = s'. It is straightforward to see that any $\gamma_{ve}(T')$ -set is a VEDS of the tree *T*. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. Obviously, $\gamma_{ve}(T') \leq \gamma_{ve}(T)$. This implies that $\gamma_{ve}(T) = \gamma_{ve}(T')$. We now get $\gamma_{ve}(T) = \gamma_{ve}(T') = (n' - l' - s' + 3)/4 = (n - 1 - l + 1 - s + 3)/4 = (n - l - s + 3)/4$.

Now assume that *T* is obtained from *T'* by operation \mathcal{O}_2 . We have n = n'+2, l = l'+1 and s = s'+1. It is straightforward to see that any $\gamma_{ve}(T')$ -set is a VEDS of the tree *T*. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. This implies that $\gamma_{ve}(T) = \gamma_{ve}(T')$. We now get $\gamma_{ve}(T) = \gamma_{ve}(T') = (n'-l'-s'+3)/4 = (n-2-l+1-s+1+3)/4 = (n-l-s+3)/4$.

Now assume that *T* is obtained from *T'* by operation \mathcal{O}_3 . We have n = n' + 4, l = l' and s = s'. We denote by *x* the leaf to which P_4 is attached. Let $v_1v_2v_3v_4$ be the attached path. Let v_1 be joined to *x*. Let *D'* be any $\gamma_{ve}(T')$ -set. It is easy to see that $D' \cup \{v_2\}$ is a VEDS of the tree *T*. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. Now let us observe that there exists a $\gamma_{ve}(T)$ -set that does not contain the vertices v_4 , v_3 , and v_1 . Let *D* be such a set. To dominate the edge v_3v_4 , we have $v_2 \in D$. Observe that $D \setminus \{v_2\}$ is a VEDS of the tree *T'*. Therefore $\gamma_{ve}(T') \leq \gamma_{ve}(T) - 1$. We now conclude that $\gamma_{ve}(T) = \gamma_{ve}(T') + 1$. We get $\gamma_{ve}(T) = \gamma_{ve}(T') + 1 = (n' - l' - s' + 3)/4 + 1 = (n - 4 - l - s + 7)/4 = (n - l - s + 3)/4$. \Box

We now give a lower bound on the vertex-edge domination number of a tree together with the characterization of the extremal trees.

Theorem 3. If *T* is a nontrivial tree of order *n* with *l* leaves and *s* support vertices, then $\gamma_{ve}(T) \ge (n - l - s + 3)/4$ with equality if and only if $T \in \mathcal{T}$.

Proof. If diam(*T*) = 1, then *T* = *P*₂. We have $(n - l - s + 3)/4 = (2 - 2 - 2 + 3)/4 < 1 = \gamma_{Ve}(T)$. If diam(*T*) = 2, then *T* is a star. We have l = n - 1 and s = 1. Consequently, $(n - l - s + 3)/4 = (n - n + 1 - 1 + 3)/4 = 3/4 < 1 = \gamma_{Ve}(T)$.

Now assume that diam(T) \ge 3. Thus the order n of the tree T is at least four. We obtain the result by the induction on the number n. Assume that the theorem is true for every tree T' of order n' < n with l' leaves and s' support vertices.

First assume that some support vertex of *T*, say *x*, is strong. Let *y* be a leaf adjacent to *x*. Let T' = T - y. We have n' = n - 1, l' = l - 1 and s' = s. Obviously, $\gamma_{ve}(T) \leq \gamma_{ve}(T)$. We get $\gamma_{ve}(T) \geq \gamma_{ve}(T') \geq (n' - l' - s' + 3)/4 = (n - 1 - l + 1 - s + 3)/4 = (n - l - s + 3)/4$. If $\gamma_{ve}(T) = (n - l - s + 3)/4$, then obviously $\gamma_{ve}(T') = (n' - l' - s' + 3)/4$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by operation \mathcal{O}_1 . Thus $T \in \mathcal{T}$. Henceforth, we can assume that every support vertex of *T* is weak.

We now root *T* at a vertex *r* of maximum eccentricity diam(*T*). Let *t* be a leaf at maximum distance from *r*, *v* be the parent of *t*, and *u* be the parent of *v* in the rooted tree. If diam(*T*) \ge 4, then let *w* be the parent of *u*. If diam(*T*) \ge 5, then let *d* be the parent of *w*. If diam(*T*) \ge 6, then let *e* be the parent of *d*. By *T_x* we denote the subtree induced by a vertex *x* and its descendants in the rooted tree *T*.

Assume that some child of *u*, say *x*, is a leaf. Let T' = T - x. We have n' = n - 1, l' = l - 1 and s' = s - 1. We get $\gamma_{\text{ve}}(T) \ge \gamma_{\text{ve}}(T') \ge (n' - l' - s' + 3)/4 = (n - 1 - l + 1 - s + 1 + 3)/4 > (n - l - s + 3)/4$.

Now assume that among the children of *u* there is a support vertex other than *v*. Let $T' = T - T_v$. We have n' = n - 2, l' = l - 1 and s' = s - 1. We get $\gamma_{ve}(T) \ge \gamma_{ve}(T') \ge (n' - l' - s' + 3)/4 = (n - 2 - l + 1 - s + 1 + 3)/4 = (n - l - s + 3)/4$. If $\gamma_{ve}(T) = (n - l - s + 3)/4$, then obviously $\gamma_{ve}(T) = (n' - l' - s' + 3)/4$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by operation \mathcal{O}_2 . Thus $T \in \mathcal{T}$.

Now assume that $d_T(u) = 2$. Assume that $d_T(w) \ge 3$. First assume that some child of w, say x, is a leaf. Let T' = T - x. We have n' = n - 1, l' = l - 1 and s' = s - 1. We get $\gamma_{ve}(T) \ge \gamma_{ve}(T') \ge (n' - l' - s' + 3)/4 = (n - 1 - l + 1 - s + 1 + 3)/4 > (n - l - s + 3)/4$.

Now assume that no child of w is a leaf. Let $T' = T - T_u$. We have n' = n - 3, l' = l - 1 and s' = s - 1. Let us observe that there exists a $\gamma_{ve}(T)$ -set that does not contain the vertices t and v. Let D be such a set. To dominate the edge vt, we have $u \in D$. Let us observe that $D \setminus \{u\}$ is a VEDS of the tree T'. Therefore $\gamma_{ve}(T) \leq \gamma_{ve}(T) - 1$. We now get $\gamma_{ve}(T) \geq \gamma_{ve}(T') + 1 \geq (n' - l' - s' + 3)/4 + 1 = (n - 3 - l + 1 - s + 1 + 7)/4 > (n - l - s + 3)/4$.

If $d_T(w) = 1$, then $T = P_4$. We have $(n - l - s + 3)/4 = (4 - 2 - 2 + 3)/4 < 1 = \gamma_{ve}(T)$. Now assume that $d_T(w) = 2$. First assume that $d_T(d) \ge 3$. Let $T' = T - T_w$. We have n' = n - 4, l' = l - 1 and s' = s - 1. Let us observe that there exists a $\gamma_{ve}(T)$ -set that does not contain the vertices t, v and w. Let D be such a set. To dominate the edge vt, we have $u \in D$. Observe that $D \setminus \{u\}$ is a VEDS of the tree T'. Therefore $\gamma_{ve}(T') \le \gamma_{ve}(T) - 1$. We now get $\gamma_{ve}(T) \ge \gamma_{ve}(T') + 1 \ge (n' - l' - s' + 3)/4 + 1 = (n - 4 - l + 1 - s + 1 + 7)/4 > (n - l - s + 3)/4$.

Now assume that $d_T(d) = 2$. First assume that some child of e is a leaf. Let $T' = T - T_w$. We have n' = n - 4, l' = l and s' = s - 1. Similarly as in the previous possibility, we conclude that $\gamma_{Ve}(T') \leq \gamma_{Ve}(T) - 1$. We get $\gamma_{Ve}(T) \geq \gamma_{Ve}(T') + 1 \geq (n' - l' - s' + 3)/4 + 1 = (n - 4 - l - s + 1 + 7)/4 > (n - l - s + 3)/4$.

Now assume that no child of *e* is a leaf. Let $T' = T - T_w$. We have n' = n - 4, l' = l and s' = s. If n' = 1, then $T = P_5 = T_1 \in \mathcal{T}$. Assume that $n' \ge 2$. Similarly as earlier, we conclude that $\gamma_{\text{Ve}}(T') \le \gamma_{\text{Ve}}(T) - 1$. We now get $\gamma_{\text{Ve}}(T) \ge \gamma_{\text{Ve}}(T') + 1 \ge (n' - l' - s' + 3)/4 + 1 = (n - 4 - l - s + 7)/4 = (n - l - s + 3)/4$. If $\gamma_{\text{Ve}}(T) = (n - l - s + 3)/4$, then obviously $\gamma_{\text{Ve}}(T') = (n' - l' - s' + 3)/4$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by operation \mathcal{O}_3 . \Box

Next we show that if *T* is a tree of order $n \ge 3$, then $\gamma_{ve}(T)$ is bounded above by n/3. For the purpose of characterizing the trees attaining this bound, we introduce a family \mathcal{F} of trees $T = T_k$ that can be obtained as follows. Let T_1 be a path P_3 . If *k* is a positive integer, then T_{k+1} can be obtained recursively from T_k by attaching a path P_3 by joining one of its leaves to a vertex of T_k adjacent to a path P_2 or P_3 .

We now prove that for every tree *T* of the family \mathcal{F} we have $\gamma_{ve}(T) = n/3$.

Lemma 4. If $T \in \mathcal{F}$, then $\gamma_{ve}(T) = n/3$.

Proof. We use the induction on the number k of operations performed to construct the tree T. If $T = T_1 = P_3$, then $\gamma_{ve}(T) = 1 = n/3$. Let k be a positive integer. Assume that the result is true for every tree $T' = T_k$ of the family \mathcal{F} constructed by k-1 operations. Let n' be the order of the tree T'. Let $T = T_{k+1}$ be a tree of the family \mathcal{F} constructed by k operations. We have n = n' + 3. We denote by x the vertex to which is attached P_3 . Let $v_1v_2v_3$ be the attached path. Let v_1 be adjacent to x. Let D' be any $\gamma_{ve}(T')$ -set. It is easy to see that $D' \cup \{v_1\}$ is a VEDS of the tree T. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. If x is adjacent to a path P_2 , then let us observe that there exists a $\gamma_{ve}(T)$ -set that contains the vertices v_1 and x. Let D be such a set. The set D is minimal, thus $v_2, v_3 \notin D$. It is easy to observe that $D \setminus \{v_1\}$ is a VEDS of the tree T'. If x is adjacent to a path P_3 different from $v_1v_2v_3$, say abc, then let a and x be adjacent. Let us observe that there exists a $\gamma_{ve}(T)$ -set that contains the vertices v_1 and a. Let D be such a set. The set D is minimal, thus $v_2, v_3 \notin D$. It is easy to a set. The set D is minimal, thus $v_2, v_3 \notin D$. Let us observe that $D \setminus \{v_1\}$ is a VEDS of the tree T'. We now conclude that $\gamma_{ve}(T') \leq \gamma_{ve}(T) - 1$, and consequently, $\gamma_{ve}(T) = \gamma_{ve}(T') + 1$. We get $\gamma_{ve}(T) = \gamma_{ve}(T') + 1 = n'/3 + 1 = (n-3)/3 + 1 = n/3$.

We now give an upper bound on the vertex–edge domination number of a tree together with the characterization of the extremal trees.

Theorem 5. If *T* is a tree of order $n \ge 3$, then $\gamma_{ve}(T) \le n/3$ with equality if and only if $T \in \mathcal{F}$.

Proof. First assume that diam(*T*) = 2. Thus *T* is a star. If $T = P_3$, then $T = T_1 \in \mathcal{F}$. If *T* is a star different from P_3 , then we get $n/3 > 1 = \gamma_{ve}(T)$.

Now assume that diam(T) \ge 3. Thus the order n of the tree T is at least four. We obtain the result by the induction on the number n. Assume that the theorem is true for every tree T' of order n' < n.

First assume that some support vertex of *T*, say *x*, is strong. Let *y* be a leaf adjacent to *x*. Let T' = T - y. It is straightforward to see that any $\gamma_{ve}(T')$ -set is a VEDS of the tree *T*. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. We now get $\gamma_{ve}(T) \leq \gamma_{ve}(T') \leq n'/3 < n/3$.

We now root *T* at a vertex *r* of maximum eccentricity diam(*T*). Let *t* be a leaf at maximum distance from *r*, *v* be the parent of *t*, and *u* be the parent of *v* in the rooted tree. If diam(*T*) \ge 4, then let *w* be the parent of *u*. By *T_x* we denote the subtree induced by a vertex *x* and its descendants in the rooted tree *T*.

Assume that some child of u, say x, is a leaf. Let T' = T - x. Let D' be a $\gamma_{ve}(T')$ -set that contains no leaf. It is easy to observe that D' is a VEDS of the tree T. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. We now get $\gamma_{ve}(T) \leq \gamma_{ve}(T') \leq n'/3 < n/3$.

Now assume that among the children of u there is a support vertex other than v. Let $T' = T - T_v$. Let us observe that there exists a $\gamma_{ve}(T')$ -set that contains the vertex u. Let D' be such a set. It is easy to see that D' is a VEDS of the tree T. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. We now get $\gamma_{ve}(T) \leq \gamma_{ve}(T') \leq n'/3 < n/3$.

Now assume that $d_T(u) = 2$. First assume that w is adjacent to a leaf, say x. Let T' = T - x. Let us observe that there exists a $\gamma_{Ve}(T')$ -set that contains the vertex u. Let D' be such a set. It is easy to see that D' is a VEDS of the tree T. Thus $\gamma_{Ve}(T) \leq \gamma_{Ve}(T')$. We now get $\gamma_{Ve}(T) \leq \gamma_{Ve}(T') \leq n'/3 < n/3$.

Now assume that there is a child of w other than u, say x, such that the distance of w to the most distant vertex of T_x is two or three. It suffices to consider only the possibilities when T_x is a path P_2 or P_3 . Let $T' = T - T_u$. We have n' = n - 3. Let D' be any $\gamma_{ve}(T')$ -set. It is easy to observe that $D' \cup \{u\}$ is a VEDS of the tree T. Thus $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. We now get $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1 \leq n'/3 + 1 = n/3$. If $\gamma_{ve}(T) = n/3$, then obviously $\gamma_{ve}(T') = n'/3$. By the inductive hypothesis we have $T' \in \mathcal{F}$. The tree T can be obtained from T' by attaching a path P_3 by joining one of its leaves to the vertex u. Thus $T \in \mathcal{F}$.

Now assume that $d_T(w) = 2$. Let $T' = T - T_w$. We have n' = n - 4. If n' = 1, then $T = P_5$. We have $\gamma_{ve}(P_5) = 1 < 5/3$. If n' = 2, then $T = P_6$. The path P_6 can be obtained from two paths P_3 by joining them through leaves. Thus $T \in \mathcal{F}$. Now assume that $n' \ge 3$. Let D' be any $\gamma_{ve}(T')$ -set. Let us observe that $D' \cup \{u\}$ is a VEDS of the tree T. Thus $\gamma_{ve}(T) \le \gamma_{ve}(T') + 1$. We now get $\gamma_{ve}(T) \le \gamma_{ve}(T') + 1 \le n'/3 + 1 = (n - 1)/3 < n/3$. \Box

References

- [1] M. Chellali, T. Haynes, A note on the total domination number of a tree, J. Comb. Math. Comb. Comput. 58 (2006) 189-193.
- [2] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [3] T. Haynes, S. Hedetniemi, P. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [4] M. Krzywkowski, A lower bound on the total outer-independent domination number of a tree, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 7–9.
- [5] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math., Graph Theory 24 (2004) 165–169.
- [6] J. Lewis, S. Hedetniemi, T. Haynes, G. Fricke, Vertex-edge domination, Util. Math. 81 (2010) 193-213.
- [7] J. Peters, Theoretical and algorithmic results on domination and connectivity, PhD thesis, Clemson University, 1986.