Partial differential equations

A convergence result for the periodic unfolding method related to fast diffusion on manifolds

Un résultat de convergence pour la méthode d'éclatement périodique lié à la diffusion rapide sur des variétés

Isabell Graf\textsuperscript{a}, Malte A. Peter\textsuperscript{b,c}

\textsuperscript{a} Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
\textsuperscript{b} Institute of Mathematics, University of Augsburg, Augsburg, Germany
\textsuperscript{c} Augsburg Centre for Innovative Technologies, Augsburg, Germany

\textbf{Article history:}
Received 24 April 2013
Accepted after revision 5 March 2014
Available online 26 March 2014
Presented by Alain Bensoussan

\textbf{Article info}

Based on the periodic unfolding method in periodic homogenization, we deduce a convergence result for gradients of functions defined on connected, smooth, and periodic manifolds. Under the assumption of certain a-priori estimates of the gradient, which are typical for fast diffusion, the sum of a term involving a gradient with respect to the slow variable and one with respect to the fast variable is obtained in the homogenization limit. In addition, we show in a brief example how to apply this result and find for a reaction-diffusion equation defined on a periodic manifold that the homogenized equation contains a term describing macroscopic diffusion.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\textbf{Résumé}

À l'aide de la méthode d'éclatement périodique, nous démontrons un résultat de convergence des gradients de fonctions définies sur des variétés connexes, différentiables et périodiques. Sous certaines conditions d'estimation du gradient, typiques de la diffusion rapide, nous obtenons à la limite d'homogénéisation la somme d'un gradient de la variable globale et d'un gradient de la variable locale. Un exemple illustre l'utilisation de ce résultat : pour une équation de réaction et diffusion définie sur une variété périodique, nous démontrons que l'équation homogénéisée contient un terme décrit une diffusion globale.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section{Setting}

The periodic unfolding method is a technique to homogenize partial differential equations. The main idea is the introduction of an operator $T_\varepsilon$, which maps a function $\varphi_\varepsilon$ defined on a finely structured periodic domain $\Omega_\varepsilon \subset \mathbb{R}^n$ to a function...
The periodic unfolding method was developed in [3–6] based on ideas of [2]. It is the purpose of this note to extend these results by a weak compactness result for $H^1$-functions defined on a periodic manifold satisfying certain bounds (Theorem 4 below). These arise in problems involving fast surface diffusion, cf. Section 4. For utilization in the proof of Theorem 4, we also show an extension lemma (Lemma 5), which may be useful in related contexts as well.

We briefly describe the setting and summarize important results required in what follows. Let $\Omega \subset \mathbb{R}^n$ be a domain, and further let $\Omega_\varepsilon = \bigcup_{k \in \mathbb{Z}^n} \varepsilon (k + Y) \cap \Omega$ and $\Gamma_\varepsilon = \bigcup_{k \in \mathbb{Z}^n} \varepsilon (k + \Gamma) \cap \Omega$ be sets with periodic fine-structure with unit cell $Y = [0,1]^n$ and a smooth manifold $\Gamma \subset \Omega$, such that $\Gamma_\varepsilon$ is smooth and connected and $\Omega$ is representable by a finite union of axis-parallel cuboids, each of which is assumed to have corner coordinates in $Q^m$. This last technical assumption is required in order to use a certain extension operator, cf. Remark 6. Note that there also exist recent works in the context of periodic unfolding and manifolds, where the manifold itself is not periodic but has a periodic pattern on its surface [7], which is different from the setting considered here.

Let $\mathcal{N}_\varepsilon := \{ \xi \in \mathbb{Z}^n | \varepsilon (\xi + Y) \subset \Omega \}$ and $\hat{\Omega}_\varepsilon := \text{interior} \left( \bigcup_{\xi \in \mathbb{Z}^n} \varepsilon(\xi + \mathcal{N}) \right)$.

For every $z \in \mathbb{R}^n$, we define $[z]_Y$ as the unique integer combination $\sum_{i=1}^n k_i e_i$ of the periods such that $[z]_Y = z - [z]_Y \in Y$. The periodic unfolding operator $T_\varepsilon$ is then defined as follows [4]:

Definition 1. Let $\varphi \in L^p(\Omega_\varepsilon)$, $p \in [1, \infty)$. For any $\varepsilon > 0$, we define $T_\varepsilon : L^p(\Omega_\varepsilon) \to L^p(\Omega \times Y)$ such that

\[
[T_\varepsilon(\varphi)](x, y) = \varphi \left( \left\lfloor \frac{x - \varepsilon y}{\varepsilon} \right\rfloor + \varepsilon y \right) \quad \text{a.e. for } (x, y) \in \hat{\Omega}_\varepsilon \times Y, \quad \quad [T_\varepsilon(\varphi)](x, y) = 0 \quad \text{a.e. for } (x, y) \in \Omega \setminus \hat{\Omega}_\varepsilon \times Y.
\]

The main advantage of using the periodic unfolding operator is that $T_\varepsilon(\varphi)$ is defined on the fixed domain $\Omega \times Y$ even for varying $\varepsilon$. Thus, we may use standard convergence results from functional analysis. For example, the following weak compactness result in $H^1$ is proven in [5]. It is the main ingredient in identifying the limit problem when homogenizing typical reaction–diffusion equations stated on $\Omega_\varepsilon$.

Theorem 2. For every $\varepsilon > 0$, let $\varphi_\varepsilon$ be in $H^1(\Omega_\varepsilon)$ and let $\| \varphi_\varepsilon \|_{H^1(\Omega_\varepsilon)}$ be bounded independently of $\varepsilon$. Then there exist $\varphi \in H^1(\Omega)$ and $\tilde{\varphi} \in L^2(\Omega, H^1_\text{per}(Y))$ such that, up to a subsequence,

\[
T_\varepsilon(\varphi_\varepsilon) \xrightarrow{\varepsilon \to 0} \varphi \quad \text{weakly in } L^2(\Omega, H^1_\text{per}(Y)), \quad T_\varepsilon(\nabla \varphi_\varepsilon) \xrightarrow{\varepsilon \to 0} \nabla \varphi + \nabla_y \tilde{\varphi} \quad \text{weakly in } L^2(\Omega, L^2(Y)).
\]

When internal boundary terms are to be homogenized, e.g. arising from interface conditions or surface concentrations, the boundary periodic unfolding operator $\hat{T}_\varepsilon$ is introduced. It is defined as follows, see [6].

Definition 3. Let $\varphi \in L^p(\Gamma_\varepsilon)$, $p \in [1, \infty)$. Then the boundary periodic unfolding operator $\hat{T}_\varepsilon : L^p(\Gamma_\varepsilon) \to L^p(\Omega \times \Gamma)$ is defined as

\[
\hat{T}_\varepsilon(\varphi)(x, y) = \varphi \left( \left\lfloor \frac{x - \varepsilon y}{\varepsilon} \right\rfloor + \varepsilon y \right) \quad \text{a.e. for } (x, y) \in \hat{\Omega}_\varepsilon \times \Gamma, \quad \hat{T}_\varepsilon(\varphi)(x, y) = 0 \quad \text{a.e. for } (x, y) \in \Omega \setminus \hat{\Omega}_\varepsilon \times \Gamma.
\]

It is well known in periodic homogenization that different scalings with the homogenization parameter lead to different limit behavior (see e.g. [14], where weak compactness results in the spirit of Theorem 2 are discussed for different scalings). The canonical scaling of surface terms is $\varepsilon$, that of surface gradients is $\varepsilon^3$, which is due to the fact that $|\Gamma_\varepsilon| \sim \varepsilon^{-1}$ in the limit. For these scalings, associated with slow diffusion, local (or microscopic) diffusion in the unit cell, i.e. with respect to the $y$-variable, is obtained in the homogenization limit [11,13].

The purpose of this contribution is to extend the results to fast diffusion, associated with a scaling of the surface gradients with $\varepsilon^1$. It turns out that this leads to global (or macroscopic) diffusion, i.e. with respect to the $x$-variable, in the homogenization limit.

In what follows, we formulate the main result in Section 2, present the proof in Section 3 and apply it to homogenize a prototypical diffusion problem in Section 4.

2. Statement of the main result

The main result is the following weak compactness result for $H^1$-functions defined on a manifold $\Gamma_\varepsilon$.

Theorem 4. Let $\varphi_\varepsilon \in H^1(\Gamma_\varepsilon)$ be a sequence of functions with

\[
\varepsilon \| \varphi_\varepsilon \|_{L^2(\Gamma_\varepsilon)}^2 + \varepsilon \| \nabla \varphi_\varepsilon \|_{L^2(\Gamma_\varepsilon)}^2 \leq C,
\]
where C is independent of $\varepsilon$. Let $P_{\Gamma}$ be the orthogonal projection from $\mathbb{R}^n$ to the tangent space $T_y \Gamma$ for every $y \in \Gamma$. Then two assertions hold true.

1. There exists a function $\varphi_0 \in H^1(\Omega)$ such that, up to a subsequence,
   \[
   T^b_\varepsilon(\varphi_\varepsilon) \rightharpoonup 0 \quad \text{weakly in } L^2(\Omega \times \Gamma) \quad \text{and} \quad \varepsilon \int \varphi_\varepsilon \psi \, d\sigma_x \rightharpoonup |\Gamma| |\varepsilon| \int \varphi_0 \psi \, dx \quad \text{for all } \psi \in C^\infty(\Omega).
   \]

2. There exists a $\tilde{\varphi} \in L^2(\Omega, H^1_0(\Gamma))$ such that, up to a subsequence,
   \[
   T^b_\varepsilon(\nabla_x \varphi_\varepsilon) \rightharpoonup 0 \quad P_{\Gamma} \nabla_x \varphi_0 + \nabla_{\Gamma} \tilde{\varphi} \quad \text{weakly in } L^2(\Omega \times \Gamma).
   \]

3. Proof of the main result

For later use in the proof of Theorem 4, we first show an inverse trace lemma.

**Lemma 5.** Let $\Omega \subset \mathbb{R}^n$ and $\Gamma \subset [0, 1]^n = Y$ be a smooth and compact hypersurface such that $\Gamma_\varepsilon = \bigcup_{k \in \mathbb{Z}^n} \varepsilon(k + \Gamma) \cap \Omega$ is a smooth, periodic, and connected hypersurface. Let $f_\varepsilon \in H^1(\Gamma_\varepsilon)$. Then, there exists a function $u_\varepsilon \in H^1(\Omega)$ with $u_{\varepsilon|_{\Gamma_\varepsilon}} = f_\varepsilon$ such that

\[
\|u_\varepsilon\|_{L^2(\Omega)} \leq C_1 \varepsilon \|f_\varepsilon\|_{L^2(\Gamma_\varepsilon)} \quad \text{and} \quad \|\nabla u_\varepsilon\|_{L^2(\Omega)} \leq C_2 \varepsilon \left( \|f_\varepsilon\|_{L^2(\Gamma_\varepsilon)} + \|\nabla_{\Gamma} f_\varepsilon\|_{L^2(\Gamma_\varepsilon)} \right)
\]

for constants $C_1, C_2 > 0$ independent of $\varepsilon$.

**Proof.** Because $\Gamma$ is smooth and compact, the normal in each point $y \in \Gamma$, $n_y$, is well-defined. For small $\delta > 0$ we define $Y^\ast = \{y + dn_y \mid y \in \Gamma, d \in (-\delta, \delta)\}$ so that for every $z \in Y^\ast$ there exist unique $y \in \Gamma$ and $d \in (-\delta, \delta)$ with $y + dn_y = z$. On the tube $Y^\ast$, we define a Riemannian metric by $g_{ij}$, $i, j = 1, \ldots, n$ such that the tangential vectors $\frac{d}{dy^i}$, $i = 1, \ldots, n - 1$ form a basis of the tangent space $T_y \Gamma$ and $\frac{d}{dy^n}$ treats the normal direction $n_y$. Because $n_y$ is orthogonal to the tangent space $T_y \Gamma$, it follows that $g_{in} = g_{ni} = g_{in} = g_{ni} = 0$ for $i = 1, \ldots, n - 1$.

Now we define $\Omega^\ast = \bigcup_{k \in \mathbb{Z}^n} \varepsilon(k + Y^\ast) \cap \Omega$ and consider the scaled unit cell $\varepsilon Y$ with scaled tube $\varepsilon Y^\ast$. The width of $\varepsilon Y^\ast$ is now 2$\delta \varepsilon$ and $d \in (-\delta, \delta)$. Analogously, one finds for every $x \in \Omega^\ast$ unique $y \in \Gamma_\varepsilon$ and $d \in (-\delta, \delta)$ such that $y + dn_y = x$. Because the additional direction $n_y$ is perpendicular to the tangent space of $\Gamma_\varepsilon$, it holds that $|\Omega^\ast| \leq 2\delta \varepsilon c_1 |\Gamma_\varepsilon|$ for a constant $c_1 > 0$ independent of $\varepsilon$, which can be seen by calculating the Lebesgue measure of the manifold $\Gamma_\varepsilon$ using its charts by means of integration by substitution.

We define a function $\tilde{u}_\varepsilon \in H^1(\Omega^\ast)$ by $\tilde{u}_\varepsilon(x) = \tilde{u}_\varepsilon(y + dn_y) = f_\varepsilon(y)$ for every $x \in \Omega^\ast$. Then, the following holds:

\[
\|\tilde{u}_\varepsilon\|_{L^2(\Omega^\ast)}^2 = \int_{\Omega^\ast} \tilde{u}_\varepsilon^2(y + dn_y) \, dx \leq 2c_1 \delta \varepsilon \int_{\Gamma_\varepsilon} f_\varepsilon^2(y) \, d\sigma_y = 2c_1 \delta \varepsilon \|f_\varepsilon\|_{L^2(\Gamma_\varepsilon)}^2.
\]

To estimate the gradient, we consider the gradient in the coordinates $\frac{d}{dy^i}$, $i = 1, \ldots, n - 1$ on $T_y \Gamma_\varepsilon$, and exploit that $f_\varepsilon(y)$ is independent of $d$,

\[
\nabla_x \tilde{u}_\varepsilon(x) = \sum_{ij=1}^n g^{ij, \varepsilon}(x) \frac{\partial \tilde{u}_\varepsilon}{\partial y^j, \varepsilon}(y + dn_y) \frac{d}{dy^i, \varepsilon} = \sum_{ij=1}^n g^{ij, \varepsilon}(x) \frac{\partial f_\varepsilon}{\partial y^j, \varepsilon}(y) \frac{d}{dy^i, \varepsilon} = \sum_{ij=1}^{n-1} g^{ij, \varepsilon}(x) \frac{\partial f_\varepsilon}{\partial y^j, \varepsilon}(y) \frac{d}{dy^i, \varepsilon}
\]

for every $x \in \Omega^\ast$ with $x = y + dn_y$, $y \in \Gamma_\varepsilon$. Since the Riemannian metric tensor $g^{ij, \varepsilon}$ is continuous and $\Gamma_\varepsilon$ compact, there exists a constant $c_2$ such that for small $\delta > 0$

\[
|\nabla_x \tilde{u}_\varepsilon(x)|^2 \leq c_2 \sum_{ij=1}^{n-1} g^{ij, \varepsilon}(y) \frac{\partial f_\varepsilon}{\partial y^j, \varepsilon}(y) \frac{d}{dy^i, \varepsilon} = c_2 \left| \nabla_{\Gamma} f_\varepsilon(y) \right|^2.
\]

Now the norm of the gradient $u_\varepsilon$ can be estimated,

\[
\|\nabla \tilde{u}_\varepsilon\|_{L^2(\Omega^\ast)}^2 \leq c_2 \int_{\Omega^\ast} \left| \nabla_{\Gamma} f_\varepsilon(y) \right|^2 \, dx \leq c_1 c_2 2\delta \varepsilon \int_{\Gamma_\varepsilon} \left| \nabla_{\Gamma} f_\varepsilon(y) \right|^2 \, d\sigma_y = 2\delta \varepsilon c_1 c_2 \|\nabla_{\Gamma} f_\varepsilon\|_{L^2(\Gamma_\varepsilon)}^2.
\]

Therefore, we constructed an extension from $\Gamma_\varepsilon$ to $\Omega^\ast$ satisfying the estimates claimed. We continue by extending from $\Omega^\ast$ to $\Omega$ by using the extension operator from the article [10] for connected sets $\Omega^\ast$, which leads to an extended function $u_\varepsilon \in H^1(\Omega)$ such that
Proof of Theorem 4.

1. We use Lemma 5 to deduce the existence of a function \( \tilde{\psi}_e \in H^1(\Omega) \) such that \( \gamma(\psi_e) = \tilde{\phi}_e |_{\Gamma_e} = \phi_e \) and

\[
\| \nabla \tilde{\psi}_e \|_{L^2(\Omega)}^2 + \| \nabla \tilde{\psi}_e \|_{L^2(\Omega^*)} \leq C (\| \nabla \tilde{\psi}_e \|_{L^2(\Omega)}^2 + \| \nabla \tilde{\psi}_e \|_{L^2(\Omega^*)}^2).
\]

Hence, \( \tilde{\psi}_e \) has a weak limit function \( \psi_0 \) in \( H^1(\Omega) \). We calculate with Theorem 2

\[
\int_{\Omega \times Y} T_\varepsilon(\tilde{\psi}_e)(x, y) \psi(x, y) \, dx \, dy \xrightarrow{\varepsilon \to 0} \int_{\Omega \times Y} \psi_0(x) \psi(x, y) \, dy \, dx
\]

weakly in \( L^2(\Omega, H^1_\text{per}(Y)) \) for all \( \psi \in C^\infty(\Omega \times Y) \).

The trace operator \( \gamma_{\Omega \times \Gamma} : L^2(\Omega, H^1(\Omega)) \to L^2(\Omega, L^2(\Gamma)) \) defined by \( \gamma_{\Omega \times \Gamma}(\psi) = \varphi_{\Omega \times \Gamma} \) commutes with \( T_\varepsilon \) as follows. Let \( \psi \in H^1(\Omega_e) \), then

\[
T_\varepsilon^b(\gamma(\psi))(x_0) = T_\varepsilon^b(\gamma(\psi))^b(x_0, y) = \psi\left( e\left[ \frac{x_0}{\varepsilon} \right] T_y + \frac{y}{\varepsilon} \right) = T_\varepsilon(\psi)(x_0, y) = \gamma_{\Omega \times \Gamma}(T_\varepsilon(\psi))(x_0).
\]

It holds that \( T_\varepsilon(\tilde{\psi}_e) \) converges weakly in \( H^1_\text{per}(Y) \) in its second variable and the trace operator is linear and continuous. Using (1) it follows that

\[
\int_{\Omega \times \Gamma} T_\varepsilon(\tilde{\psi}_e)(x, y) \psi(x, y) \, dx \, dy \xrightarrow{\varepsilon \to 0} \int_{\Omega \times \Gamma} \psi_0(x) \psi(x, y) \, dy \, dx
\]

for all \( \psi \in C^\infty(\Omega) \). We used the integration formula of the operator \( T_\varepsilon^b \) in the first step and exploited that \( \psi_0 \) is independent of \( y \) in the last step. This completes the proof of part 1.

2. To prove the second part of the theorem, we need some additional definitions and properties. We define for every \( a \in \mathbb{R}^n \) the function \( z_a : \Gamma \to \mathbb{R} \) by \( z_a(y) = a^T \cdot y \) and its gradient by using the directional derivatives on \( \Gamma \) by \( \nabla_r z_a(y) = d [z_a]_{\Gamma} |_{y} = dz_a(v) = \frac{d}{dt} |_{t=0} z_a(y(t)) \) for every \( y \in \Gamma \) and for \( y : (-\delta, \delta) \to \Gamma \), \( y(0) = y \) and \( \dot{y}(0) = v \). We find that \( \frac{d}{dt} |_{t=0} z_a(y(t)) = \frac{d}{dt} |_{t=0} a^T \cdot y(t) = a^T \cdot \dot{y}(t) = a^T \cdot v \) for all \( v \in T_y \Gamma \). The only element of \( T_y \Gamma \) satisfying \( \nabla_r z_a(y) = a^T \cdot v \) for all \( v \in T_y \Gamma \) is the orthogonal projection of \( a \) to \( T_y \Gamma \). Hence, \( \nabla_r z_a = P r_a \). We define \( z_a^c(y) = z_a(y) - \frac{1}{|\Gamma|} \int_{\Gamma} z_a(y) \, dy \). Then for any vector \( a \in \mathbb{R}^n \) it is true that \( \int_{\Gamma} z_a^c(y) \, dy = 0 \).

Further we define \( M_\varepsilon^b(\varphi_e) = \frac{1}{\varepsilon^2} \int_{\Gamma} T_\varepsilon^b(\varphi_e)(x, y) \, dy \) and \( Z_e^b = \frac{1}{\varepsilon^2} (T_\varepsilon^b(\varphi_e) - M_\varepsilon^b(\varphi_e)) \). Then we deduce \( \int_{\Omega} Z_e^b \, dy = 0 \) and \( \nabla_r Z_e^b = \frac{1}{\varepsilon^2} \nabla_r T_\varepsilon^b(\varphi_e) = T_\varepsilon^b(\nabla \varphi_e) \), since \( M_\varepsilon^b(\varphi_e) \) is independent of \( y \).

Having finished these preparations, we now come to the main part of the proof of part 2. We consider \( \| Z_e^b(\varphi_e) - Z_e^c(\varphi_e) \|_{L^2(\Omega \times \Gamma)}^2 \). Note that for the \( y \)-component, the \( x \)-gradient \( \nabla_x \varphi_e \) looks like a vector in \( \mathbb{R}^n \) because \( \varphi_e \) is independent of \( y \). We use the Poincaré inequality on Riemannian manifolds (cf. [11]) to obtain

\[
\| Z_e^c(\varphi_e) - Z_e^c(\nabla \varphi_e) \|_{L^2(\Omega \times \Gamma)}^2 \
\leq C \int_{\Omega} \| \nabla_r Z_e^c(\varphi_e) - \nabla_r Z_e^c(\varphi_e) \|_{L^2(\Gamma)}^2 \, dx
\leq C \varepsilon \int_{\Omega} \| \nabla \varphi_e \|_{L^2(\Gamma)}^2 + C |\Gamma| \int_{\Omega} \| P r_a \|_{L^2(\Gamma)}^2 \, dx
\]

\[
\leq C \varepsilon \int_{\Omega} \| \nabla \varphi_e \|_{L^2(\Gamma)}^2 + C |\Gamma| \int_{\Omega} \| P r_a \|_{L^2(\Gamma)}^2 \, dx
\]

\[
\leq C \varepsilon \int_{\Omega} \| \nabla \varphi_e \|_{L^2(\Gamma)}^2 + C |\Gamma| \int_{\Omega} \| P r_a \|_{L^2(\Gamma)}^2 \, dx
\]

\[
\leq C \varepsilon \int_{\Omega} \| \nabla \varphi_e \|_{L^2(\Gamma)}^2 + C |\Gamma| \int_{\Omega} \| P r_a \|_{L^2(\Gamma)}^2 \, dx
\]

\[
\leq C \varepsilon \int_{\Omega} \| \nabla \varphi_e \|_{L^2(\Gamma)}^2 + C |\Gamma| \int_{\Omega} \| P r_a \|_{L^2(\Gamma)}^2 \, dx
\]

\[
\leq C \varepsilon \int_{\Omega} \| \nabla \varphi_e \|_{L^2(\Gamma)}^2 + C |\Gamma| \int_{\Omega} \| P r_a \|_{L^2(\Gamma)}^2 \, dx
\]
for a constant $\tilde{C} > 0$ independent of $\varepsilon$. Hence, $Z^b_\varepsilon(\varphi_\varepsilon) - Z^c_{\varepsilon \varphi_0}$ converges weakly to a function $\hat{\varphi} \in L^2(\Omega; H^1(\Gamma))$, up to a subsequence, i.e. for $\varepsilon \to 0$

$$Z^b_\varepsilon(\varphi_\varepsilon) \to \hat{\varphi} + Z^c_{\varepsilon \varphi_0}, \quad \mathcal{T}_\varepsilon^b(\nabla \varphi_\varepsilon) = \nabla \Gamma Z^b_\varepsilon(\varphi_\varepsilon) \to \nabla \Gamma \hat{\varphi} + P \nabla \Gamma \varphi_0.$$

Finally, we need to show that $\hat{\varphi} \in L^2(\Omega; H^1_{\text{per}}(\Gamma))$, this means that $\hat{\varphi}$ is $Y$-periodic in its second argument. For this purpose, we define $\tilde{\varphi}_Y := \{y \in Y \mid y_i = 0\}$ for $i = 1, \ldots, n$. We extend the functions from $\Omega$ to $\mathbb{R}^n$ by zero and compute

$$\int_{\mathbb{R}^n} \int_{\Gamma \cap \tilde{Y}} \left[ Z^b_\varepsilon(\varphi_\varepsilon)(x, y + e_i) - Z^b_\varepsilon(\varphi_\varepsilon)(x, y) \right] \psi(x, y) \, d\sigma_y \, dx \quad \text{for all } \psi \in C^\infty(\mathbb{R}^n \times \Gamma).$$

Because of the extension by zero on $\mathbb{R}^n$ we conclude for the domain $\Omega$

$$\int_{\Omega} \int_{\Gamma \cap \tilde{Y}} \int_{\mathbb{R}^n} \left[ Z^b_\varepsilon(\varphi_\varepsilon)(x, y + e_i) - Z^b_\varepsilon(\varphi_\varepsilon)(x, y) \right] \psi(x, y) \, d\sigma_y \, dx \xrightarrow{\varepsilon \to 0} \int_{\Omega} \int_{\Gamma \cap \tilde{Y}} \int_{\mathbb{R}^n} e_i^T \cdot \nabla_y \varphi_0 \psi \, d\sigma_y \, dx.$$

On the other hand we calculate

$$\int_{\Omega} \int_{\Gamma \cap \tilde{Y}} \left[ Z^c_{\varepsilon \varphi_0}(y + e_i) - Z^c_{\varepsilon \varphi_0}(y) \right] \psi(x, y) \, d\sigma_y \, dx \quad \text{for all } \psi \in C^\infty(\Omega \times \Gamma).$$

With $Z^b_\varepsilon(\varphi_\varepsilon) \to \hat{\varphi} + Z^c_{\varepsilon \varphi_0}$ we conclude that

$$\int_{\Omega} \int_{\Gamma \cap \tilde{Y}} [\hat{\varphi}(x, y + e_i) - \hat{\varphi}(x, y)] \psi(x, y) \, d\sigma_y \, dx = 0 \quad \text{for all } \psi \in C^\infty(\Omega \times \Gamma) \text{ and } i = 1, \ldots, n. \text{ So } \hat{\varphi} \in L^2(\Omega; H^1_{\text{per}}(\Gamma)) \text{ and the proof is completed.} \quad \square$$

### 4. Example

Theorem 4 can be used to derive global diffusion on a manifold for a partial differential equation in the homogenization limit. For example, this arises in biomedical applications, where molecules diffuse fast on the surface of fine-structured membranes in human cells, cf. [8,9] and references therein. The following example illustrates how Theorem 4 can be used in this context.

Let $\Gamma \subset [0, 1]^n$ be a smooth, $n - 1$ dimensional manifold, such that $\Gamma_\varepsilon = \bigcup_{k \in \mathbb{Z}^n} \varepsilon (k + \Gamma)$ is periodic, connected and smooth. Let $\Omega \subset \mathbb{R}^n$ be bounded, $f \in C(\Omega, C_0(\Gamma))$ with $f(x) := f(x, \varepsilon \frac{x}{\varepsilon})$, and $D_\varepsilon(x) = D(x, \varepsilon \frac{x}{\varepsilon})$ be an elliptic diffusion tensor on the tangent space of $T_x \Gamma_\varepsilon$, which is $\varepsilon$-periodic in its second argument and with $\lim_{\varepsilon \to 0} \|D_\varepsilon\|^2_{L^2(\Omega_\varepsilon)} = \|D\|^2_{L^2(\Omega \times \Gamma)}$ bounded. Further, for given $\varepsilon > 0$, let $u_\varepsilon$ be the solution of the problem

$$\partial_t u_\varepsilon(x, t) - \nabla \cdot (D_\varepsilon(x) \nabla u_\varepsilon(x, t)) + u_\varepsilon(x, t) = f_\varepsilon(x, t) \quad \text{on } \Gamma_\varepsilon, \quad u_\varepsilon(x, t) = 0 \quad \text{on } \partial \Omega \cap \Gamma_\varepsilon.$$

We multiply the weak formulation with $\varepsilon$ and find with standard estimations that

$$\varepsilon \|u_\varepsilon\|^2_{L^2(\Gamma_\varepsilon)} + \varepsilon \|D_\varepsilon \nabla u_\varepsilon\|^2_{L^2(\Omega_\varepsilon \times \Gamma_\varepsilon)} + \varepsilon \|u_\varepsilon\|^2_{L^2(\Omega_\varepsilon \times \Gamma_\varepsilon)} \leq C.$$

Therefore, the conditions to use Theorem 4 are satisfied. Application of the boundary unfolding operator to the weak formulation, where the test function is denoted by $\hat{\varphi}_Y$ and use of Theorem 4, we find for $\varepsilon \to 0$, noting that $|Y| = 1,$
\begin{align*}
|\Gamma| \int_{\Omega} \partial_t u_0(x, t) \psi_0(x) \, dx + \int_{\Gamma} \int_{\Gamma} D(x, y) \left[ \nabla_y \tilde{u}(x, y, t) + P_r \nabla_x u_0(x) \right] \left[ \nabla_y \psi(x, y) + P_r \nabla_y \psi_0(x) \right] \, d\sigma_y \, dx \\
+ |\Gamma| \int_{\Omega} u_0(x, t) \psi_0(x) \, dx = \int_{\Gamma} \int_{\Gamma} f_0(x, y, t) \psi_0(x) \, d\sigma_y \, dx.
\end{align*}

To determine the cell problem we first set $\psi = 0$. Let $\tilde{u}(x, y, t) = \sum_{i=1}^n \partial_i u_0(x) \chi_i(y, t)$ and $\nabla_y \tilde{u}(x, y, t) = \sum_{i=1}^n \partial_i u_0(x) \nabla_y \chi_i(y, t)$ for some $\chi_i(y, t) : \Gamma \times [0, T] \to \mathbb{R}, \ i = 1, \ldots, n$. Further, we write $P_r \nabla_x u_0$ as $\sum_{i=1}^n \partial_i u_0 P_r e_i$ and obtain
\begin{align*}
\int_{\Gamma} \int_{\Gamma} D(x, y) \left[ \sum_{i=1}^n \partial_i u_0 \nabla_y \chi_i(y, t) + \sum_{i=1}^n \partial_i u_0 P_r e_i \right] \nabla_y \psi(y, t) \, d\sigma_y \, dx \\
= \int_{\Omega} \sum_{i=1}^n \partial_i u_0 \int_{\Gamma} D(x, y) \left( \nabla_y \chi_i(y, t) + P_r e_i \right) \nabla_y \psi(y, x) \, d\sigma_y \, dx = 0
\end{align*}

for all $\psi \in \mathcal{C}^\infty(\Omega, C_{\text{per}}^\infty(\Gamma))$. Hence, the strong formulation of the cell problem is given by
\begin{align*}
-\nabla \cdot D(x, y) \left( \nabla_y \chi_i(y, t) + P_r e_i \right) = 0 \quad \text{in } \Gamma, \quad D(x, y) \left( \nabla_y \chi_i(y, t) + P_r e_i \right) \cdot n = 0 \quad \text{on } \partial \Gamma,
\end{align*}

and $\chi_i$ $Y$-periodic for all $i = 1, \ldots, n$. This equation is well-defined since $D$ maps elements of the tangent space $T_y \Gamma$ into the tangent space $T^*_y \Gamma$.

Now, we set $\psi = 0$. Then, after a brief computation, we obtain
\begin{align*}
|\Gamma| \int_{\Omega} \partial_t u_0(x, t) \psi_0(x) \, dx + \int_{\Gamma} \sum_{i=1}^n \partial_i u_0 \int_{\Gamma} (P_r e_i, D(x, y) \left( \nabla_y \chi_i(y, t) + P_r e_i \right) \psi(x, y) \, d\sigma_y \, dx \\
+ |\Gamma| \int_{\Omega} u_0(x, t) \psi_0(x) \, dx = \int_{\Gamma} \int_{\Gamma} f_0(x, y, t) \psi_0(x) \, d\sigma_y \, dx,
\end{align*}

for all $\psi_0 \in \mathcal{C}^\infty(\Omega)$. Since the orthogonal projection is symmetric $P_r^T = P_r$ and $D(x, y) \left( \nabla_y \chi_i(y, t) + P_r e_i \right)$ is already in the tangent space $T^*_y \Gamma$, we drop the first $P_r$. Defining
\begin{align*}
S_{ij}(x) = \int_{\Gamma} (D(x, y) \left( \nabla_y \chi_j(y, t) + P_r e_j \right) \psi(x, y) \, d\sigma_y, \quad S = (S_{ij})_{i,j=1,\ldots,n},
\end{align*}

we find the strong formulation of the homogenized limit problem
\begin{align*}
|\Gamma| \partial_t u_0 - \nabla_x \cdot (S(x) \nabla_x u_0) + |\Gamma| u_0 = \int_{\Gamma} f \, d\sigma_y \quad \text{in } \Omega, \quad u_0 = 0 \quad \text{on } \partial \Omega.
\end{align*}

Acknowledgements

We would like to thank Bernd Schmidt for fruitful discussions related to Lemma 5.

References


