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In this note, we show how to apply the original L2-extension theorem of Ohsawa and
Takegoshi to the standard basis of a multiplier ideal sheaf associated with a plurisubhar-
monic function. In this way, we are able to reprove the strong openness conjecture and
to obtain an effective version of the semicontinuity theorem for weighted log canonical
thresholds.
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r é s u m é

Dans cet article, nous montrons comment appliquer la version originelle du théorème
d’extension L2 de Ohsawa et Takegoshi à la base standard d’un faisceau d’idéaux multi-
plicateurs associé à une fonction plurisousharmonique. Ceci nous permet de redémontrer
la conjecture d’ouverture forte et d’obtenir une version effective du théorème de semi-
continuité pour les seuils log-canoniques pondérés.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let Ω be a domain in Cn and ϕ in the set PSH(Ω) of plurisubharmonic functions on Ω . Following Demailly and Kollár
[10], we introduce the log canonical threshold of ϕ at a point z0 ∈ Ω

cϕ(z0) = sup
{

c > 0: e−2c ϕ is L1 on a neighborhood of z0
} ∈ (0,+∞].

It is an invariant of the singularity of ϕ at z0. We refer to [5,13,6,7,9,10,14,18,19,22,23,25,26] for further information about
this number. In [10], Demailly and Kollár stated the following openness conjecture.

Conjecture. The set {c > 0: e−2c ϕ is L1 on a neighborhood of z0} equals the open interval (0, cϕ(z0)).
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In 2005, this conjecture was proved in dimension 2 by Favre and Jonsson [12,20,21]. In 2013, Berndtsson [2] completely
proved it in arbitrary dimension. For every holomorphic function f on Ω , we introduce the weighted log canonical threshold
of ϕ with weight f at z0:

cϕ, f (z0) = sup
{

c > 0: | f |2e−2c ϕ is L1 on a neighborhood of z0
} ∈ (0,+∞].

Recently, Guan and Zhou used a sophisticated version of the L2-extension theorem of Ohsawa and Takegoshi in combina-
tion with the curve selection lemma, to prove the “strong” openness conjecture, i.e. the analogue openness statement for
weighted thresholds cϕ, f (z0), and a related semi-continuity theorem for the weighted log canonical threshold [16,17]. In
this note, we show how one can apply the original version [24] of the L2-extension theorem to the members of a standard
basis for a multiplier ideal sheaf of holomorphic functions associated with a plurisubharmonic function ϕ . In this way, by
means of a simple induction on dimension, we reprove the strong openness conjecture, and give an effective version of the
semicontinuity theorem for weighted log canonical thresholds. The main results are contained in the following theorem.

Main theorem. Let f be a holomorphic function on an open set Ω in C
n and let ϕ ∈ PSH(Ω).

(i) (“Semicontinuity theorem”) Assume that
∫
Ω ′ e−2c ϕ dV 2n < +∞ on some open subset Ω ′ ⊂ Ω and let z0 ∈ Ω ′ . Then for ψ ∈

PSH(Ω ′), there exists δ = δ(c,ϕ,Ω ′, z0) > 0 such that ‖ψ − ϕ‖L1(Ω ′) � δ implies cψ(z0) > c. Moreover, as ψ converges to ϕ

in L1(Ω ′), the function e−2c ψ converges to e−2c ϕ in L1 on every relatively compact open subset Ω ′′ � Ω ′ .
(ii) (“Strong effective openness”) Assume that

∫
Ω ′ | f |2e−2c ϕ dV 2n < +∞ on some open subset Ω ′ ⊂ Ω . When ψ ∈ PSH(Ω ′)

converges to ϕ in L1(Ω ′) with ψ � ϕ , the function | f |2e−2c ψ converges to | f |2e−2c ϕ in L1 norm on every relatively compact
open subset Ω ′′ � Ω ′ .

Corollary 1.1 (“Strong openness”). For any plurisubharmonic function ϕ on a neighborhood of a point z0 ∈ C
n, the set {c > 0: | f |2 ×

e−2c ϕ is L1 on a neighborhood of z0} is an open interval (0, cϕ, f (z0)).

Corollary 1.2 (“Convergence from below”). If ψ � ϕ converges to ϕ in a neighborhood of z0 ∈ C
n, then cψ, f (z0) � cϕ, f (z0) converges

to cϕ, f (z0).

In fact, after subtracting a large constant from ϕ , we can assume ϕ � 0 in both corollaries. Then Corollary 1.1 is a conse-
quence of assertion (ii) of the main theorem when we take Ω ′ small enough and ψ = (1 + δ)ϕ with δ ↘ 0. In Corollary 1.2,
we have by definition cψ, f (z0) � cϕ, f (z0) for ψ � ϕ , but again (ii) shows that cψ, f (z0) becomes � c for any given value
c ∈ (0, cϕ, f (z0)), whenever ‖ψ − ϕ‖L1(Ω ′) is sufficiently small.

Remark 1.3. One cannot remove condition ψ � ϕ in assertion (ii) of the main theorem. Indeed, let us choose f (z) = z1,
ϕ(z) = log |z1| and ϕ j(z) = log |z1 + z2

j |, for j � 1. We have ϕ j → ϕ in L1
loc(C

n), however cϕ j , f (0) = 1 < cϕ, f (0) = 2 for
all j � 1. On the other hand, condition (i) does not require any given inequality between ϕ and ψ . Modulo Berndtsson’s
solution of the openness conjecture, (i) follows from the effective semicontinuity result of [10], but (like Guan and Zhou)
we reprove here both by a direct and much easier method.

Remark 1.4. As in Guan and Zhou [17], one can reformulate Corollary 1.1 in terms of multiplier ideal sheaves. Denote by
I(c ϕ) the sheaf of germs of holomorphic functions f ∈OCn,z such that

∫
U | f |2e−2c ϕ dV 2n < +∞ on some neighborhood U

of z (it is known by [23] that this is a coherent ideal sheaf over Ω , but we will not use this property here). Then at every
point z ∈ Ω we have

I(c ϕ) = I+(c ϕ) := lim
ε↘0

I
(
(1 + ε)c ϕ

)
.

2. Proof of the main theorem

We equip the ring OCn,0 of germs of holomorphic functions at 0 with the homogeneous lexicographic order of mono-

mials zα = zα1
1 . . . zαn

n , that is, zα1
1 . . . zαn

n < zβ1
1 . . . zβn

n if and only if |α| = α1 + · · · + αn < |β| = β1 + · · · + βn or |α| = |β| and

αi < βi for the first index i with αi 	= βi . For each f (z) = aα1 zα1 + aα2 zα2 + · · · with aα j 	= 0, j � 1 and zα1
< zα2

< · · ·, we

define the initial coefficient, initial monomial and initial term of f to be respectively IC( f ) = aα1 , IM( f ) = zα1
, IT( f ) = aα1 zα1

,

and the support of f to be SUPP( f ) = {zα1
, zα2

, . . .}. For any ideal I of OCn,0, we define IM(I) to be the ideal generated
by {IM( f )}{ f ∈I} . First, we recall the division theorem of Hironaka and the concept of standard basis of an ideal.

Division theorem of Hironaka. (See [15,1,3,4,11].) Let f , g1, . . . , gk ∈OCn,0 . Then there exist h1, . . . ,hk, s ∈OCn,0 such that

f = h1 g1 + · · · + hk gk + s,
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and SUPP(s) ∩ 〈IM(g1), . . . , IM(gk)〉 = ∅, where 〈IM(g1), . . . , IM(gk)〉 denotes the ideal generated by the family (IM(g1), . . . ,

IM(gk)).

Standard basis of an ideal. Let I be an ideal of OCn,0 and let g1, . . . , gk ∈ I be such that IM(I) = 〈IM(g1), . . . , IM(gk)〉. Take
f ∈ I . By the division theorem of Hironaka, there exist h1, . . . ,hk, s ∈OCn,0 such that

f = h1 g1 + · · · + hk gk + s,

and SUPP(s) ∩ IM(I) = ∅. On the other hand, since s = f − h1 g1 + · · · + hk gk ∈ I , we have IM(s) ∈ IM(I). Therefore s = 0
and the g j ’s are generators of I . By permuting the g j ’s and performing ad hoc subtractions, we can always arrange that
IM(g1) < IM(g2) < · · · < IM(gk), and we then say that (g1, . . . , gk) is a standard basis of I .

We will prove the main theorem by induction on dimension n. Of course, it holds for n = 0. Assume that the theorem
holds for dimension n − 1. Thanks to the L2-extension theorem of Ohsawa and Takegoshi [24], we obtain the following key
lemma.

Lemma 2.1. Let ϕ � 0 be a plurisubharmonic function and f be a holomorphic function on the polydisc 	n
R of center 0 and (poly)radius

R > 0 in C
n, such that for some c > 0∫

	n
R

∣∣ f (z)
∣∣2

e−2c ϕ(z) dV 2n(z) < +∞.

Let ψ j � 0, j � 1, be a sequence of plurisubharmonic functions on 	n
R with ψ j → ϕ in L1

loc(	
n
R), and assume that either f = 1

identically or ψ j � ϕ for all j � 1. Then for every r < R and ε ∈ (0, 1
2 r], there exist a value wn ∈ 	ε � {0}, an index j0 , a constant

c̃ > c and a sequence of holomorphic functions F j on 	n
r , j � j0 , such that IM(F j)� IM( f ), F j(z) = f (z)+ (zn − wn)

∑
a j,αzα with

|wn||a j,α | � r−|α|ε for all α ∈Nn, and

∫
	n

r

∣∣F j(z)
∣∣2

e−2c̃ψ j(z) dV 2n(z) � ε2

|wn|2 < +∞, ∀ j � j0.

Moreover, one can choose wn in a set of positive measure in the punctured disc 	ε � {0} (the index j0 = j0(wn) and the constant
c̃ = c̃(wn) may then possibly depend on wn).

Proof. By Fubini’s theorem, we have∫
	R

[ ∫

	n−1
R

∣∣ f
(
z′, zn

)∣∣2
e−2c ϕ(z′,zn) dV 2n−2

(
z′)]dV 2(zn) < +∞.

Since the integral extended to a small disc zn ∈ 	η tends to 0 as η → 0, it will become smaller than any preassigned value,
say ε2

0 > 0, for η � η0 small enough. Therefore we can choose a set of positive measures of values wn ∈ 	η � {0} such that

∫

	n−1
R

∣∣ f
(
z′, wn

)∣∣2
e−2c ϕ(z′,wn) dV 2n−2

(
z′) � ε2

0

πη2
<

ε2
0

|wn|2 .

Since the main theorem is assumed to hold for n − 1, for any ρ < R there exist j0 = j0(wn) and c̃ = c̃(wn) > c such that
∫

	n−1
ρ

∣∣ f
(
z′, wn

)∣∣2
e−2c̃ψ j(z′,wn) dV 2n−2

(
z′) <

ε2
0

|wn|2 , ∀ j � j0.

(For this, one applies part (i) in case f = 1, and part (ii) in case ψ j � ϕ , using the fact that ψ = c̃
c ψ j converges to ϕ as c̃ → c

and j → +∞.) Now, by the L2-extension theorem of Ohsawa and Takegoshi (see [24] or [8]), there exists a holomorphic
function F j on 	n−1

ρ × 	R such that F j(z′, wn) = f (z′, wn) for all z′ ∈ 	n−1
ρ , and

∫

	n−1
ρ ×	R

∣∣F j(z)
∣∣2

e−2c̃ ψ j(z) dV 2n(z) � Cn R2
∫

	n−1
ρ

∣∣ f
(
z′, wn

)∣∣2
e−2c̃ ψ j(z′,wn) dV 2n−2

(
z′) � Cn R2ε2

0

|wn|2 ,

where Cn is a constant which only depends on n (the constant is universal for R = 1 and is rescaled by R2 otherwise).
By the mean value inequality for the plurisubharmonic function |F j|2, we get
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∣∣F j(z)
∣∣2 � 1

πn(ρ − |z1|)2 . . . (ρ − |zn|)2

∫
	ρ−|z1 |(z1)×···×	ρ−|zn |(zn)

|F j|2 dV 2n

�
Cn R2ε2

0

πn(ρ − |z1|)2 . . . (ρ − |zn|)2|wn|2 ,

where 	ρ(z) is the disc of center z and radius ρ . Hence, for any r < R , by taking ρ = 1
2 (r + R) we infer

‖F j‖L∞(	n
r ) �

2nC
1
2

n Rε0

π
n
2 (R − r)n|wn|

. (1)

Since F j(z′, wn) − f (z′, wn) = 0, ∀z′ ∈ 	n−1
r , we can write F j(z) = f (z) + (zn − wn)g j(z) for some function g j(z) =∑

α∈Nn a j,αzα on 	n−1
r × 	R . By (1), we get

‖g j‖	n
r
= ‖g j‖	n−1

r ×∂	r
� 1

r − |wn|
(‖F j‖L∞(	n

r ) + ‖ f ‖L∞(	n
r )

)
� 1

r − |wn|
(

2nC
1
2

n Rε0

π
n
2 (R − r)n|wn|

+ ‖ f ‖L∞(	n
r )

)
.

Thanks to the Cauchy integral formula, we find

|a j,α| � ‖g j‖	n
r

r|α| � 1

(r − |wn|)r|α|

(
2nC

1
2

n Rε0

π
n
2 (R − r)n|wn|

+ ‖ f ‖L∞(	n
r )

)
.

We take in any case η � ε0 � ε � 1
2 r. As |wn| < η � 1

2 r, this implies

|wn||a j,α| r|α| � 2

r

(
2nC

1
2

n Rε0

π
n
2 (R − r)n

+ ‖ f ‖L∞(	n
r )|wn|

)
� C ′ε0,

for some constant C ′ depending only on n, r, R and f . This yields the estimates of Lemma 2.1 for ε0 := C ′′ε with C ′′
sufficiently small. Finally, we prove that IM(F j) � IM( f ). Indeed, if IM(g j) � IM( f ), since |wn‖a j,α | � r−|α|ε , we can choose

ε small enough such that IM(F j) = IM( f ) and | IC(F j)

IC( f ) | ∈ ( 1
2 ,2). Otherwise, if IM(g j) < IM( f ), we have IM(F j) = IM(g j) <

IM( f ). �
Proof of the main theorem. By the well-known properties of (pluri)potential theory, the L1 convergence of ψ to ϕ implies
that ψ → ϕ almost everywhere, and the assumptions guarantee that ϕ and ψ are uniformly bounded on every relatively
compact subset of Ω ′ . In particular, after shrinking Ω ′ and subtracting constants, we can assume that ϕ � 0 on Ω . Also,
since the L1 topology is metrizable, it is enough to work with a sequence (ψ j) j�1 converging to ϕ in L1(Ω ′). Again, we can
assume that ψ j � 0 and that ψ j → ϕ almost everywhere on Ω ′ . By a trivial compactness argument, it is enough to show
(i) and (ii) for some neighborhood Ω ′′ of a given point z0 ∈ Ω ′ . We assume here z0 = 0 for simplicity of notation, and fix
a polydisc 	n

R of center 0 with R so small that 	n
R ⊂ Ω ′ . Then ψ j(•, zn) → ϕ(•, zn) in the topology of L1(	n−1

R ) for almost
every zn ∈ 	R .

Proof of statement (i). We have here
∫
	n

R
e−2c ϕ dV 2n < +∞ for R > 0 small enough. By Lemma 2.1 with f = 1, for every

r < R and ε > 0, there exist wn ∈ 	ε � {0}, an index j0, a number c̃ > c and a sequence of holomorphic functions F j on
	n

r , j � j0, such that F j(z) = 1 + (zn − wn)
∑

a j,αzα , |wn||a j,α | r−|α| � ε and

∫
	n

r

∣∣F j(z)
∣∣2

e−2c̃ψ j(z) dV 2n(z) � ε2

|wn|2 , ∀ j � j0.

For ε � 1
2 , we conclude that |F j(0)| = |1 − wna j,0| � 1

2 hence cψ j (0) � c̃ > c and the first part of (i) is proved. In fact, after

fixing such ε and wn , we even obtain the existence of a neighborhood Ω ′′ of 0 on which |F j | � 1
4 , and thus get a uniform

bound
∫
Ω ′′ e−2c̃ ψ j(z) dV 2n(z) � M < +∞. The second assertion of (i) then follows from the estimate

∫
Ω ′′

∣∣e−2c ψ j(z) − e−2c ϕ(z)
∣∣ dV 2n(z) �

∫
Ω ′′∩{|ψ j |�A}

∣∣e−2c ψ j(z) − e−2c ϕ(z)
∣∣dV 2n(z)

+
∫

Ω ′′∩{ψ <−A}
e−2c ϕ(z) dV 2n(z) + e−2(c̃−c)A

∫
Ω ′′∩{ψ <−A}

e−2c̃ψ j(z) dV 2n(z).
j j
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In fact, the last two terms converge to 0 as A → +∞, and, for A fixed, the first integral on the right hand side converges
to 0 by Lebesgue’s bounded convergence theorem, since ψ j → ϕ almost everywhere on Ω ′′ .
Proof of statement (ii). Take f1, . . . , fk ∈OCn,0 such that ( f1, . . . , fk) is a standard basis of I(c ϕ)0 with IM( f1) < · · · < IM( fk),
and 	n

R a polydisc so small that∫
	n

R

∣∣ fl(z)
∣∣2

e−2c ϕ(z) dV 2n(z) < +∞, l = 1, . . . ,k.

Since the germ of f at 0 belongs to the ideal ( f1, . . . , fk), we can essentially argue with the fl ’s instead of f . By Lemma 2.1,
for every r < R and εl > 0, there exist wn,l ∈ 	εl � {0}, an index j0 = j0(wn,l), a number c̃ = c̃(wn,l) > c and a sequence of
holomorphic functions F j,l on 	n

r , j � j0, such that F j,l(z) = 1 + (zn − wn,l)
∑

a j,l,αzα , |wn,l||a j,l,α | r−|α| � εl and

∫
	n

r

∣∣F j,l(z)
∣∣2

e−2c̃ψ j(z) dV 2n(z) �
ε2

l

|wn,l|2 , ∀l = 1, . . . ,k, ∀ j � j0. (2)

Since ψ j � ϕ and c̃ > c, we get F j,l ∈ I(c̃ ψ j)0 ⊂ I(c ϕ)0. The next step of the proof consists in modifying (F j,l)1�l�k
in order to obtain a standard basis of I(c ϕ)0. For this, we proceed by selecting successively ε1 � ε2 � · · · � εk (and
suitable wn,l ∈ 	εl � {0}). We have IM(F j,1), . . . , IM(F j,k) ∈ IM(I(c ϕ)0), in particular IM(F j,1) is divisible by IM( fl) for
some l = 1, . . . ,k. Since IM(F j,1) � IM( f1) < · · · < IM( fk), we must have IM(F j,1) = IM( f1) and thus IM(g j,1) � IM( f1). As

|wn,1||a j,1,α | � ε1, we will have | IC(F j,1)

IC( f1)
| ∈ ( 1

2 ,2) for ε1 small enough. Now, possibly after changing ε2 to a smaller value,
we show that there exists a polynomial P j,2,1 such that the degree and coefficients of P j,2,1 are uniformly bounded, with

IM(F j,2 − P j,2,1 F j,1) = IM( f2) and
| IC(F j,2−P j,2,1 F j,1)|

| IC( f2)| ∈ ( 1
2 ,2). We consider two cases:

Case 1: If IM(g j,2) � IM( f2), since |wn,2||a j,2,α | � r−|α|ε2, we can choose ε2 so small that IM(F j,2) = IM( f2) and
| IC(F j,2)|
| IC( f2)| ∈

( 1
2 ,2). We then take P j,2,1 = 0.

Case 2: If IM(g j,2) < IM( f2), we have IM(g j,2) = IM(F j,2) ∈ IM(I(c ϕ)0). Hence IM(g j,2) is divisible by IM( fl) for some
l = 1, . . . ,k. However, since IM(g j,2) < IM( f2) < · · · < IM( fk), the only possibility is that IM(g j,2) be divisible by IM( f1).
Take b ∈ C and β,γ ∈ N

n such that IT(g j,2) := a j,2,γ zγ = bzβ IT(F j,1). We have zβ � zγ = IM(g j,2) < IM( f2) and

|wn,2||b| = |wn,2| | IC(g j,2)|
| IC(F j,1)| �

2|wn,2||a j,2,γ |
| IC( f1)| � 2r−|γ |ε2

| IC( f1)|
can be taken arbitrarily small. Set g̃ j,2(z) = g j,2(z) − bzβ F j,1(z) = ∑

ã j,2,αzα and

F̃ j,2(z) = f2(z) + (zn − wn,2)g̃ j,2(z) = F j,2(z) − b(zn − wn,2)zβ F j,1(z).

We have IM(g̃ j,2) > IM(g j,2). Since |wn,2||b| = O (ε2) and |wn,2||a j,2,α | = O (ε2), we get |wn,2||ã j,2,α | = O (ε2) as well. Now,
we consider two further cases. If IM(g̃ j,2) � IM( f2), we can again change ε2 for a smaller value so that IM( F̃ j,2) = IM( f2)

and
| IC( F̃ j,2)|
| IC( f2)| ∈ ( 1

2 ,2). Otherwise, if IM(g̃ j,2) < IM( f2), we have IM(F j,2) = IM(g j,2) < IM( F̃ j,2) = IM(g̃ j,2) < IM( f2). No-
tice that {zγ : zγ < IM( f2)} is a finite set. By using similar arguments a finite number of times, we find ε2 so small that

IM(F j,2 − P j,2,1 F j,1) = IM( f2) and
| IC(F j,2−P j,2,1 F j,1)|

| IC( f2)| ∈ ( 1
2 ,2) for some polynomial P j,2,1. Repeating the same arguments for

F j,3, . . . , F j,k , we select inductively εl , l = 1, . . . ,k, and construct linear combinations F ′
j,l = F j,l −∑

1�m�l−1 P j,l,m F ′
j,m with

polynomials P j,l,m , 1 � m < l � k, possessing uniformly bounded coefficients and degrees, such that IM(F ′
j,l) = IM( fl) and

| IC(F ′
j,l)|

| IC( fl)| ∈ ( 1
2 ,2) for all l = 1, . . . ,k and j � j0. This implies that (F ′

j,1, . . . , F ′
j,k) is also a standard basis of I(c ϕ)0. By The-

orem 1.2.2 in [15], we can find ρ , K > 0 so small that there exist holomorphic functions h j,1, . . . ,h j,k on 	n
ρ with ρ < r,

such that

f = h j,1 F ′
j,1 + h j,2 F ′

j,2 + · · · + h j,k F ′
j,k on 	n

ρ

and ‖h j,l‖L∞(	n
ρ ) � K‖ f ‖L∞(	n

r ) , for all l = 1, . . . ,k (ρ and K only depend on f1, . . . , fk). By (2), this implies a uniform
bound∫

	n
ρ

∣∣ f (z)
∣∣2

e−2c̃ψ j(z) dV 2n(z)� M < +∞

for some c̃ > c and all j � j0. Take Ω ′′ = 	n
ρ . We obtain the L1 convergence of | f |2e−2cψ j to | f |2e−2cϕ almost exactly as

we argued for the second assertion of part (i), by using the estimate
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∫
Ω ′′

| f |2∣∣e−2c ψ j(z) − e−2c ϕ(z)
∣∣ dV 2n(z) �

∫
Ω ′′∩{|ψ j |�A}

| f |2∣∣e−2c ψ j(z) − e−2c ϕ(z)
∣∣dV 2n(z)

+
∫

Ω ′′∩{ψ j<−A}
| f |2e−2cϕ(z) dV 2n(z)

+ e−2(c̃−c)A
∫

Ω ′′∩{ψ j<−A}
| f |2e−2c̃ ψ j(z) dV 2n(z).
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