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The aim of this note is to present results concerning the differentiability of some Fourier
series arising from Eisenstein series. Sine series exhibit different behaviours with respect to
differentiability than the series with cosine function. The precise results are given for the
series related to Eisenstein series of weight 2, whereas for the series arising from Eisenstein
series of higher weight we conjecture the results.
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r é s u m é

Le but de cette note est de présenter des résultats concernant la dérivabilité de certaines
séries de Fourier découlant des séries d’Eisenstein. Les séries de sinus se comportent
différemment des séries de cosinus. Les résultats précis sont donnés pour les séries liées
à la série d’Eisenstein de poids 2. Pour les séries découlant des séries d’Eisenstein de poids
supérieur à 2, nous formulons une conjecture.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the results

In this note, we present some results concerning the differentiability of certain Fourier series related to Eisenstein series.
Let k ∈ N∗ be even. Recall that the Eisenstein series of weight k over the upper-half plane H is defined by the first equality

Ek(z) = 1

2ζ(k)

∑
m,n∈Z

(m,n) �=(0,0)

1

(m + nz)k
= 1 − 2k

Bk

∞∑
n=1

σk−1(n)e2π inz,
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and the second equality provides its Fourier series, where Bk is the k-th Bernoulli number, and σk−1(n) = ∑
d|n dk−1. If k = 2,

the function is quasi-modular under the action of SL2(Z), and for k � 4 it is modular. We are interested in the real-valued
continuous functions Fk , Gk defined by

Fk(x) =
∞∑

n=1

σk−1(n)

nk+1
sin(2πnx) and Gk(x) =

∞∑
n=1

σk−1(n)

nk+1
cos(2πnx).

In particular, we focus on the differentiability of F2 and G2. The differentiability of F2 at x depends on the continued
fraction expansion of x, but G2 is probably differentiable at any x ∈ R \ Q. Already in 1933, Wilton in his work [7] proved
that there is a connection between certain trigonometric series involving the divisor function σ0(n) and continued fractions.

Theorem 1.1. Neither F2 nor G2 is differentiable at any x ∈Q. However, G2 is right and left differentiable at each x ∈ Q.

Let (
pn(x)
qn(x) )n�0 be the sequence of continued fraction approximations of x, i.e. pn(x)

qn(x) = [a0;a1,a2, . . . ,an]. We then make
the following definition, which is motivated by the work of Brjuno [1].

Definition 1.2. Let x ∈R \Q. We will say that x is a square-Brjuno number if
∑∞

n=0
log qn+1(x)

qn(x)2 < ∞.

In addition, we introduce two technical conditions:

lim
n→∞

log qn+4(x)

qn(x)2
= 0; (1)

lim
n→∞

log qn+3(x)

qn(x)2
= 0, and an = 1 for only finitely many n. (2)

We note that the square-Brjuno property and conditions (1) and (2) are independent.

Theorem 1.3.

(i) If x ∈ R \ Q is a square-Brjuno number satisfying (1) or (2), then F2 is differentiable at x. If x ∈ R \ Q is not a square-Brjuno
number, then F2 is not differentiable at x.

(ii) Let x ∈R \Q satisfy (1) or (2), then G2 is differentiable at x.

We observe that condition (1) is satisfied for almost all x, but that condition (2) holds for almost no x. We believe
that both conditions (1) and (2) could be removed in Theorem 1.3; however, the applied method does not enable us to
do this. Moreover, almost all numbers are square-Brjuno. If x ∈ R \ Q is not square-Brjuno, then it must be Liouville. We
prove Theorems 1.1 and 1.3 using the method proposed by Itatsu in the study of the Riemann “non-differentiable” function
S(x) = ∑∞

n=1
1

n2 sin(πn2x), see [3].

2. Sketch of the proofs

Let ϕ2 be the complex-valued function defined by ϕ2(x) = G2(x) + iF2(x). For a matrix γ = ( a b
c d

) ∈ SL2(Z) and z ∈ C,

we will denote the fraction transformation as γ · z = az+b
cz+d , if cz + d ∈ C \ {0}, and γ · (− d

c ) = ∞. Recall that for all γ =( a b
c d

) ∈ SL2(Z) and all z ∈ H, we have E2(z) = E2(γ · z)(cz + d)−2 + 6icπ−1(cz + d)−1. Based on this quasi-modular identity
and the relationship between ϕ2 and E2, we obtained the following functional equation for ϕ2.

Lemma 2.1. Let p
q ∈ Q, γ = ( a b

q −p

) ∈ SL2(Z), and x ∈R. We have

ϕ2(x) = (qx − p)4ϕ2(γ · x) − iπ3

3q3
(qx − p) Log(qx − p) + Pγ (qx − p)

− π2

q2
(qx − p)2 Log(qx − p) + 6

x∫
p
q

q(qt − p)2(q(x − t) − (qt − p)
)
ϕ2(γ · t)dt, (3)

where Log denotes the principal value of the complex logarithm and Pγ ∈ C[x] is a polynomial of degree less than or equal to 3 that
depends on γ .
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We then take the imaginary (or real) part of each side of Eq. (3). The conclusion of Theorem 1.1 follows from let-
ting x → p

q and estimating the growth rates of each of the terms of (3). For F2, the principal term is given by

F2(x) = F2(
p
q ) − π3

3q3 (qx − p) log |qx − p|(1 + o(1)), which explains that F2 is not differentiable at p
q , whereas for G2 the

term Re(− iπ3

3q3 (qx − p) Log(qx − p)) determines the differentiability properties at p
q .

Let T : [0,1) → [0,1) denote the Gauss map, that is T (0) = 0 and T (x) = 1
x mod 1 if x �= 0. The function T is differentiable

at all x /∈ Q. We apply (3) to the matrix γ = ( 0 −1
1 0

)
. Since ϕ2 is 1-periodic, we have ϕ2(− 1

x ) = ϕ2(−T (x)). By taking the
imaginary part of each side of the equation, we deduce from (3) the following equation.

Lemma 2.2. For all x ∈ [0,1) we have

F2(x) = −x4 F2
(
T (x)

) − π3

3
x log(x) + P (x) − 6

x∫
0

t2(x − 2t)F2
(
T (t)

)
dt, (4)

where P ∈R[x] is of degree less than or equal to 3.

For brevity, write β−1(x) = 1 and βn(x) = ∏n
j=0 T j(x) for n � 0. Assume x /∈Q. We then iterate Eq. (4) repeatedly substituting

T (x) for x to obtain the following.

Lemma 2.3. For all x ∈ [0,1) \Q and all n ∈N∗ we have

F2(x) = (−1)n F2
(
T n(x)

)
βn−1(x)4 + 6

n∑
j=1

(−1) jβ j−2(x)4

T j−1(x)∫
0

t2(T j−1(x) − 2t
)

F2
(
T (t)

)
dt

+ π3

3

n∑
j=1

(−1) j log
(
T j−1(x)

)
β j−1(x)β j−2(x)3 +

n∑
j=1

(−1) j−1 P
(
T j(x)

)
β j−2(x)4, (5)

where P ∈R[x] is the same polynomial as in Lemma 2.2.

If n → ∞, the three series in (5) converge for all x ∈ R, and the term (−1)n F2(T n(x))βn−1(x)4 → 0, which provides an
alternative expression for F2.

We are interested in the limit limh→0
F2(x+h)−F2(x)

h . Therefore, for each h > 0, we choose a suitable nh ∈N, which satisfies:
nh → ∞ and is non-decreasing as h → 0. We then apply Lemma 2.3 with n = nh and analyse the rate of change of each of
the terms in (5) as h → 0. The next lemma illustrates the origin of the square-Brjuno condition in Theorem 1.3.

Lemma 2.4. Write f ′(x) for the derivative of a function f at x. Given x ∈ R \Q, the series

π3

3

∞∑
j=1

(−1) j(log
(
T j−1(x)

)
β j−1(x)β j−2(x)3)′

(6)

converges if and only if x is square-Brjuno. On the other hand, the two series

6
∞∑
j=1

(−1) j

(
β j−2(x)4

T j−1(x)∫
0

t2(T j−1(x) − 2t
)

F2
(
T (t)

)
dt

)′
and

n∑
j=1

(−1) j−1(P
(
T j(x)

)
β j−2(x)4)′

(7)

converge for all x ∈ R \Q.

The technical conditions (1) and (2) arise from the analysis of the term

1

h

(
(−1)nh F2

(
T nh (x + h)

)
βnh−1(x + h)4 − (−1)nh F2

(
T nh (x)

)
βnh−1(x)4).

As h → 0, it converges to 0 if either (1) or (2) is satisfied.
We follow the same strategy for G2; however, we do not have an analogue of (6) which explains why we only need

(1) or (2) in Theorem 1.3(ii). The detailed proofs of Theorems 1.1 and 1.3 will be published elsewhere [5]. If F2 or G2 is
differentiable at x by Theorem 1.3, the value of the derivative is given by the addition of (6) and (7).
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3. Generalisation

Conjecture 3.1. Let k ∈N∗ be even. We have the following.

(i) Neither Fk nor Gk is differentiable at any x ∈ Q. However, Gk is right and left differentiable at each x ∈Q.
(ii) The function Gk is differentiable at any x ∈R \Q.

(iii) The function Fk is differentiable at x ∈R \Q if and only if

∞∑
n=0

log qn+1(x)

qn(x)k
< ∞. (8)

In order to prove Conjecture 3.1 for k � 4, we would proceed as in the case k = 2. There are a lot of terms to analyse,
but we believe that for any given k � 4, the method presented here would work (adding a technical condition similar to (1)
of the type log(qn+4)

qk
n

→ 0). However, the calculations become very long, and we do not do it explicitly. In [5], we present

arguments justifying the conjecture.
Chamizo [2] studied the differentiability of series arising from automorphic forms f (x) = ∑∞

n=0 rne2π inx of positive
weights k under the Fuchsian group with a multiplier system: f s(x) = ∑∞

n=1
rn
ns e2π inx . His method is based on the theory of

automorphic forms. However, he requires s < k
2 +1 for f not being a cusp form. In our case, s = k+1, which does not enable

us to apply his results. Another method of analysing such series involves wavelet methods, and was proposed by Jaffard [4],
again, in the study of S(x). Studying the Hölder regularity exponent of Fk and Gk with this method enables us to prove
some cases of Conjecture 3.1. For each n, we define κn by the equality |x − pn

qn
| = 1

qκn
n

, and we let μ(x) = lim supn→∞ κn ,

ν(x) = lim infn→∞ κn . It has been proved in [6] that for k � 4 and x ∈ R \ Q, if 1
ν(x) − 1

μ(x) < 1
k , then the Hölder regularity

exponents of Fk and Gk at x are both 1 + k
μ(x) . If μ(x) < ∞, then both Fk and Gk are differentiable at x. The condition

μ(x) < ∞ implies (8), and we see that one direction of Conjecture 3.1(iii) is true. Since for almost all x, μ(x) = ν(x) = 2,
the conjecture is proved for almost all x for all k � 4.
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