Number theory/Mathematical analysis

Note on the differentiability of arithmetic Fourier series arising from Eisenstein series

CrossMark

Note sur la dérivabilité de séries arithmétiques de Fourier provenant des séries d'Eisenstein

Izabela Petrykiewicz
Université Joseph-Fourier, Institut Fourier, 100, rue des Maths, 38402 Saint-Martin-d'Hères, France

ARTICLE INFO

Article history:

Received 25 November 2013
Accepted after revision 18 February 2014
Available online 11 March 2014
Presented by Jean-Pierre Kahane

Abstract

The aim of this note is to present results concerning the differentiability of some Fourier series arising from Eisenstein series. Sine series exhibit different behaviours with respect to differentiability than the series with cosine function. The precise results are given for the series related to Eisenstein series of weight 2, whereas for the series arising from Eisenstein series of higher weight we conjecture the results.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Le but de cette note est de présenter des résultats concernant la dérivabilité de certaines séries de Fourier découlant des séries d'Eisenstein. Les séries de sinus se comportent différemment des séries de cosinus. Les résultats précis sont donnés pour les séries liées à la série d'Eisenstein de poids 2 . Pour les séries découlant des séries d'Eisenstein de poids supérieur à 2 , nous formulons une conjecture.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the results

In this note, we present some results concerning the differentiability of certain Fourier series related to Eisenstein series. Let $k \in \mathbb{N}^{*}$ be even. Recall that the Eisenstein series of weight k over the upper-half plane \mathbb{H} is defined by the first equality

$$
E_{k}(z)=\frac{1}{2 \zeta(k)} \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m+n z)^{k}}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) \mathrm{e}^{2 \pi \mathrm{inz}}
$$

[^0]and the second equality provides its Fourier series, where B_{k} is the k-th Bernoulli number, and $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$. If $k=2$, the function is quasi-modular under the action of $S L_{2}(\mathbb{Z})$, and for $k \geqslant 4$ it is modular. We are interested in the real-valued continuous functions F_{k}, G_{k} defined by
$$
F_{k}(x)=\sum_{n=1}^{\infty} \frac{\sigma_{k-1}(n)}{n^{k+1}} \sin (2 \pi n x) \quad \text { and } \quad G_{k}(x)=\sum_{n=1}^{\infty} \frac{\sigma_{k-1}(n)}{n^{k+1}} \cos (2 \pi n x)
$$

In particular, we focus on the differentiability of F_{2} and G_{2}. The differentiability of F_{2} at x depends on the continued fraction expansion of x, but G_{2} is probably differentiable at any $x \in \mathbb{R} \backslash \mathbb{Q}$. Already in 1933, Wilton in his work [7] proved that there is a connection between certain trigonometric series involving the divisor function $\sigma_{0}(n)$ and continued fractions.

Theorem 1.1. Neither F_{2} nor G_{2} is differentiable at any $x \in \mathbb{Q}$. However, G_{2} is right and left differentiable at each $x \in \mathbb{Q}$.
Let $\left(\frac{p_{n}(x)}{q_{n}(x)}\right)_{n} \geqslant 0$ be the sequence of continued fraction approximations of x, i.e. $\frac{p_{n}(x)}{q_{n}(x)}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$. We then make the following definition, which is motivated by the work of Brjuno [1].

Definition 1.2. Let $x \in \mathbb{R} \backslash \mathbb{Q}$. We will say that x is a square-Brjuno number if $\sum_{n=0}^{\infty} \frac{\log q_{n+1}(x)}{q_{n}(x)^{2}}<\infty$.
In addition, we introduce two technical conditions:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\log q_{n+4}(x)}{q_{n}(x)^{2}}=0 \tag{1}\\
& \lim _{n \rightarrow \infty} \frac{\log q_{n+3}(x)}{q_{n}(x)^{2}}=0, \text { and } \quad a_{n}=1 \text { for only finitely many } n . \tag{2}
\end{align*}
$$

We note that the square-Brjuno property and conditions (1) and (2) are independent.

Theorem 1.3.

(i) If $x \in \mathbb{R} \backslash \mathbb{Q}$ is a square-Brjuno number satisfying (1) or (2), then F_{2} is differentiable at x. If $x \in \mathbb{R} \backslash \mathbb{Q}$ is not a square-Brjuno number, then F_{2} is not differentiable at x.
(ii) Let $x \in \mathbb{R} \backslash \mathbb{Q}$ satisfy (1) or (2), then G_{2} is differentiable at x.

We observe that condition (1) is satisfied for almost all x, but that condition (2) holds for almost no x. We believe that both conditions (1) and (2) could be removed in Theorem 1.3; however, the applied method does not enable us to do this. Moreover, almost all numbers are square-Brjuno. If $x \in \mathbb{R} \backslash \mathbb{Q}$ is not square-Brjuno, then it must be Liouville. We prove Theorems 1.1 and 1.3 using the method proposed by Itatsu in the study of the Riemann "non-differentiable" function $S(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\pi n^{2} x\right)$, see [3].

2. Sketch of the proofs

Let φ_{2} be the complex-valued function defined by $\varphi_{2}(x)=G_{2}(x)+\mathrm{i} F_{2}(x)$. For a matrix $\gamma=\binom{a b}{c d} \in S L_{2}(\mathbb{Z})$ and $z \in \mathbb{C}$, we will denote the fraction transformation as $\gamma \cdot z=\frac{a z+b}{c z+d}$, if $c z+d \in \mathbb{C} \backslash\{0\}$, and $\gamma \cdot\left(-\frac{d}{c}\right)=\infty$. Recall that for all $\gamma=$ $\binom{a b}{c d} \in S L_{2}(\mathbb{Z})$ and all $z \in \mathbb{H}$, we have $E_{2}(z)=E_{2}(\gamma \cdot z)(c z+d)^{-2}+6 \mathrm{i} c \pi^{-1}(c z+d)^{-1}$. Based on this quasi-modular identity and the relationship between φ_{2} and E_{2}, we obtained the following functional equation for φ_{2}.

Lemma 2.1. Let $\frac{p}{q} \in \mathbb{Q}, \gamma=\left(\begin{array}{cc}a & b \\ q & -p\end{array}\right) \in S L_{2}(\mathbb{Z})$, and $x \in \mathbb{R}$. We have

$$
\begin{align*}
\varphi_{2}(x)= & (q x-p)^{4} \varphi_{2}(\gamma \cdot x)-\frac{\mathrm{i} \pi^{3}}{3 q^{3}}(q x-p) \log (q x-p)+P_{\gamma}(q x-p) \\
& -\frac{\pi^{2}}{q^{2}}(q x-p)^{2} \log (q x-p)+6 \int_{\frac{p}{q}}^{x} q(q t-p)^{2}(q(x-t)-(q t-p)) \varphi_{2}(\gamma \cdot t) \mathrm{d} t \tag{3}
\end{align*}
$$

where Log denotes the principal value of the complex logarithm and $P_{\gamma} \in \mathbb{C}[x]$ is a polynomial of degree less than or equal to 3 that depends on γ.

We then take the imaginary (or real) part of each side of Eq. (3). The conclusion of Theorem 1.1 follows from letting $x \rightarrow \frac{p}{q}$ and estimating the growth rates of each of the terms of (3). For F_{2}, the principal term is given by $F_{2}(x)=F_{2}\left(\frac{p}{q}\right)-\frac{\pi^{3}}{3 q^{3}}(q x-p) \log |q x-p|(1+o(1))$, which explains that F_{2} is not differentiable at $\frac{p}{q}$, whereas for G_{2} the term $\operatorname{Re}\left(-\frac{\mathrm{i} \pi^{3}}{3 q^{3}}(q x-p) \log (q x-p)\right)$ determines the differentiability properties at $\frac{p}{q}$.

Let $T:[0,1) \rightarrow[0,1)$ denote the Gauss map, that is $T(0)=0$ and $T(x)=\frac{1}{x} \bmod 1$ if $x \neq 0$. The function T is differentiable at all $x \notin \mathbb{Q}$. We apply (3) to the matrix $\gamma=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Since φ_{2} is 1 -periodic, we have $\varphi_{2}\left(-\frac{1}{x}\right)=\varphi_{2}(-T(x))$. By taking the imaginary part of each side of the equation, we deduce from (3) the following equation.

Lemma 2.2. For all $x \in[0,1)$ we have

$$
\begin{equation*}
F_{2}(x)=-x^{4} F_{2}(T(x))-\frac{\pi^{3}}{3} x \log (x)+P(x)-6 \int_{0}^{x} t^{2}(x-2 t) F_{2}(T(t)) \mathrm{d} t \tag{4}
\end{equation*}
$$

where $P \in \mathbb{R}[x]$ is of degree less than or equal to 3 .
For brevity, write $\beta_{-1}(x)=1$ and $\beta_{n}(x)=\prod_{j=0}^{n} T^{j}(x)$ for $n \geqslant 0$. Assume $x \notin \mathbb{Q}$. We then iterate Eq. (4) repeatedly substituting $T(x)$ for x to obtain the following.

Lemma 2.3. For all $x \in[0,1) \backslash \mathbb{Q}$ and all $n \in \mathbb{N}^{*}$ we have

$$
\begin{align*}
F_{2}(x)= & (-1)^{n} F_{2}\left(T^{n}(x)\right) \beta_{n-1}(x)^{4}+6 \sum_{j=1}^{n}(-1)^{j} \beta_{j-2}(x)^{4} \int_{0}^{T^{j-1}(x)} t^{2}\left(T^{j-1}(x)-2 t\right) F_{2}(T(t)) \mathrm{d} t \\
& +\frac{\pi^{3}}{3} \sum_{j=1}^{n}(-1)^{j} \log \left(T^{j-1}(x)\right) \beta_{j-1}(x) \beta_{j-2}(x)^{3}+\sum_{j=1}^{n}(-1)^{j-1} P\left(T^{j}(x)\right) \beta_{j-2}(x)^{4}, \tag{5}
\end{align*}
$$

where $P \in \mathbb{R}[x]$ is the same polynomial as in Lemma 2.2.
If $n \rightarrow \infty$, the three series in (5) converge for all $x \in \mathbb{R}$, and the term $(-1)^{n} F_{2}\left(T^{n}(x)\right) \beta_{n-1}(x)^{4} \rightarrow 0$, which provides an alternative expression for F_{2}.

We are interested in the limit $\lim _{h \rightarrow 0} \frac{F_{2}(x+h)-F_{2}(x)}{h}$. Therefore, for each $h>0$, we choose a suitable $n_{h} \in \mathbb{N}$, which satisfies: $n_{h} \rightarrow \infty$ and is non-decreasing as $h \rightarrow 0$. We then apply Lemma 2.3 with $n=n_{h}$ and analyse the rate of change of each of the terms in (5) as $h \rightarrow 0$. The next lemma illustrates the origin of the square-Brjuno condition in Theorem 1.3.

Lemma 2.4. Write $f^{\prime}(x)$ for the derivative of a function f at x. Given $x \in \mathbb{R} \backslash \mathbb{Q}$, the series

$$
\begin{equation*}
\frac{\pi^{3}}{3} \sum_{j=1}^{\infty}(-1)^{j}\left(\log \left(T^{j-1}(x)\right) \beta_{j-1}(x) \beta_{j-2}(x)^{3}\right)^{\prime} \tag{6}
\end{equation*}
$$

converges if and only if x is square-Brjuno. On the other hand, the two series

$$
\begin{equation*}
6 \sum_{j=1}^{\infty}(-1)^{j}\left(\beta_{j-2}(x)^{4} \int_{0}^{T^{j-1}(x)} t^{2}\left(T^{j-1}(x)-2 t\right) F_{2}(T(t)) \mathrm{d} t\right)^{\prime} \quad \text { and } \sum_{j=1}^{n}(-1)^{j-1}\left(P\left(T^{j}(x)\right) \beta_{j-2}(x)^{4}\right)^{\prime} \tag{7}
\end{equation*}
$$

converge for all $x \in \mathbb{R} \backslash \mathbb{Q}$.
The technical conditions (1) and (2) arise from the analysis of the term

$$
\frac{1}{h}\left((-1)^{n_{h}} F_{2}\left(T^{n_{h}}(x+h)\right) \beta_{n_{h}-1}(x+h)^{4}-(-1)^{n_{h}} F_{2}\left(T^{n_{h}}(x)\right) \beta_{n_{h}-1}(x)^{4}\right)
$$

As $h \rightarrow 0$, it converges to 0 if either (1) or (2) is satisfied.
We follow the same strategy for G_{2}; however, we do not have an analogue of (6) which explains why we only need (1) or (2) in Theorem 1.3(ii). The detailed proofs of Theorems 1.1 and 1.3 will be published elsewhere [5]. If F_{2} or G_{2} is differentiable at x by Theorem 1.3, the value of the derivative is given by the addition of (6) and (7).

3. Generalisation

Conjecture 3.1. Let $k \in \mathbb{N}^{*}$ be even. We have the following.
(i) Neither F_{k} nor G_{k} is differentiable at any $x \in \mathbb{Q}$. However, G_{k} is right and left differentiable at each $x \in \mathbb{Q}$.
(ii) The function G_{k} is differentiable at any $x \in \mathbb{R} \backslash \mathbb{Q}$.
(iii) The function F_{k} is differentiable at $x \in \mathbb{R} \backslash \mathbb{Q}$ if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\log q_{n+1}(x)}{q_{n}(x)^{k}}<\infty \tag{8}
\end{equation*}
$$

In order to prove Conjecture 3.1 for $k \geqslant 4$, we would proceed as in the case $k=2$. There are a lot of terms to analyse, but we believe that for any given $k \geqslant 4$, the method presented here would work (adding a technical condition similar to (1) of the type $\frac{\log \left(q_{n+4}\right)}{q_{n}^{k}} \rightarrow 0$). However, the calculations become very long, and we do not do it explicitly. In [5], we present arguments justifying the conjecture.

Chamizo [2] studied the differentiability of series arising from automorphic forms $f(x)=\sum_{n=0}^{\infty} r_{n} \mathrm{e}^{2 \pi \mathrm{inx}}$ of positive weights k under the Fuchsian group with a multiplier system: $f_{s}(x)=\sum_{n=1}^{\infty} \frac{r_{n}}{n^{s}} \mathrm{e}^{2 \pi \mathrm{i} n x}$. His method is based on the theory of automorphic forms. However, he requires $s<\frac{k}{2}+1$ for f not being a cusp form. In our case, $s=k+1$, which does not enable us to apply his results. Another method of analysing such series involves wavelet methods, and was proposed by Jaffard [4], again, in the study of $S(x)$. Studying the Hölder regularity exponent of F_{k} and G_{k} with this method enables us to prove some cases of Conjecture 3.1. For each n, we define κ_{n} by the equality $\left|x-\frac{p_{n}}{q_{n}}\right|=\frac{1}{q_{n}^{\kappa n}}$, and we let $\mu(x)=\limsup _{n \rightarrow \infty} \kappa_{n}$, $v(x)=\liminf _{n \rightarrow \infty} \kappa_{n}$. It has been proved in [6] that for $k \geqslant 4$ and $x \in \mathbb{R} \backslash \mathbb{Q}$, if $\frac{1}{\nu(x)}-\frac{1}{\mu(x)}<\frac{1}{k}$, then the Hölder regularity exponents of F_{k} and G_{k} at x are both $1+\frac{k}{\mu(x)}$. If $\mu(x)<\infty$, then both F_{k} and G_{k} are differentiable at x. The condition $\mu(x)<\infty$ implies (8), and we see that one direction of Conjecture 3.1(iii) is true. Since for almost all $x, \mu(x)=\nu(x)=2$, the conjecture is proved for almost all x for all $k \geqslant 4$.

References

[1] A.D. Brjuno, Analytic form of differential equations. I, Tr. Mosk. Mat. Obs. 25 (1971) 119-262 (in Russian); A.D. Brjuno, Analytic form of differential equations. II, Tr. Mosk. Mat. Obs. 26 (1972) 199-239 (in Russian).
[2] F. Chamizo, Automorphic forms and differentiability properties, Trans. Amer. Math. Soc. 356 (2004) 1909-1935.
[3] S. Itatsu, Differentiability of Riemann's function, Proc. Jpn. Acad. Ser. A Math. Sci. 57 (10) (1981) 492-495.
[4] S. Jaffard, The spectrum of singularities of Riemann's function, Rev. Mat. Iberoam. 12 (2) (1996) 441-460.
[5] I. Petrykiewicz, Differentiability of Fourier series arising from Eisenstein series, in preparation.
[6] I. Petrykiewicz, Hölder regularity of arithmetic Fourier series arising from modular forms, preprint, arXiv:1311.0655.
[7] J.R. Wilton, An approximate functional equation with applications to a problem of Diophantine approximation, J. Reine Angew. Math. 169 (1933) 219-237.

[^0]: E-mail address: izabela.petrykiewicz@ujf-grenoble.fr.
 http://dx.doi.org/10.1016/j.crma.2014.02.009
 1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

