Algebraic geometry

Nefness: Generalization to the lc case

Nefness : Généralisation au cas lc

Enrica Floris

A R T I C L E I N F O

Article history:

Received 13 January 2014
Accepted after revision 27 January 2014
Available online 12 February 2014
Presented by Claire Voisin

Abstract

This note is devoted to a proof of the b-nefness of the moduli part in the canonical bundle formula for an lc-trivial fibration that is lc and not klt over the generic point of the base. This result is proved in [3, §8] and [4] by using the theory of variation of mixed Hodge structure. Here we present a proof that makes use only of the theory of variation of Hodge structure and follows Ambro's proof of [2, Theorem 0.2]. © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Cette note se consacre à démontrer que la partie modulaire de la formule du fibré canonique pour une fibration qui est lc-triviale et non klt-triviale est b-semiample. Ce résultat est démontré dans $[3, \S 8]$ et dans [4] en utilisant des resultats très profonds concernant les variations de structure de Hodge mixte. On présente ici une preuve qui est plus élémentaire et qui suit celle de [2, théorème 0.2].

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

La formule du fibré canonique est un outil important en géométrie birationnelle pour traduire des propriétés qui sont vraies sur les variétés de type log-général en propriétés pour les variétés de dimension de Kodaira positive.

Cette note est consacrée à la preuve du théorème suivant. Pour les définitions de la fibration lc-triviale et de la formule du fibré canonique, voir [2].

Théorème 0.1 (Theorem 1.1). Soit $f:(X, B) \rightarrow Y$ une fibration lc-triviale. Alors il existe un morphisme propre et birationnel $Y^{\prime} \rightarrow Y$ avec les propriétés suivantes:
(i) $K_{Y^{\prime}}+B_{Y^{\prime}}$ est un diviseur \mathbb{Q}-Cartier ;
(ii) $M_{Y^{\prime}}$ est un diviseur nef \mathbb{Q}-Cartier, et pour tout morphisme propre et birationnel $v: Y^{\prime \prime} \rightarrow Y^{\prime}$, on a :

$$
v^{*}\left(M_{Y^{\prime}}\right)=M_{Y^{\prime \prime}}
$$

où $B_{Y^{\prime}}, M_{Y^{\prime}}$ et $M_{Y^{\prime \prime}}$ sont le discriminant et les parties modulaires des fibrations lc-triviales induites par le changement de base.

Le théorème 0.1 est une généralisation de [2, theorème 0.2]; la preuve présentée dans ce travail généralise la preuve dans [2]. Le résultat a été demontré dans [4, theorèmes 3.1, 3.4 et 3.9] et [5], en utilisant des résultats concernant les variations de structure de Hodge mixte. Pour demontrer qu'il existe un morphisme $Y^{\prime} \rightarrow Y$ tel que $M_{Y^{\prime}}$ est nef, il faut montrer que la partie modulaire, sous certaines conditions de régularité sur f, est le quotient d'un faisceau localement

1631-073X/\$ - see front matter © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crma.2014.01.011
libre et semipositif. Cette propriété est demontrée dans le lemme 1.2, qui généralise [2, lemme 5.2]. La preuve du reste de l'énoncé, dans le cas des fibrations lc-triviales, se base sur l'isomorphisme naturel :

$$
\rho^{*} f_{*} \omega_{X / Y} \cong f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}
$$

où f^{\prime} est la fibration induite par changement de base. Dans le cas des fibrations lc-triviales, on a besoin d'un resultat plus fort. Notamment, on demontre que, si $D=\sum D_{i}$ est un diviseur reduit sur X et D^{\prime} est sa transformée stricte, alors on a, pour tout i un isomorphisme naturel :

$$
\rho^{*} R^{i} f_{*} \omega_{X / Y}(D) \cong R^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}\left(D^{\prime}\right)
$$

1. Introduction

The canonical bundle formula is an important tool in algebraic geometry used for translating properties that are true for varieties of general type in properties for varieties of non-negative Kodaira dimension.

This note is devoted to the proof of the following result. For all the definitions and preliminary results on the canonical bundle formula, we refer to [2].

Theorem 1.1. Let $f:(X, B) \rightarrow Y$ be an lc-trivial fibration. Then there exists a proper birational morphism $Y^{\prime} \rightarrow Y$ with the following properties:
(i) $K_{Y^{\prime}}+B_{Y^{\prime}}$ is a \mathbb{Q}-Cartier divisor;
(ii) $M_{Y^{\prime}}$ is a nef \mathbb{Q}-Cartier divisor and for every proper birational morphism $v: Y^{\prime \prime} \rightarrow Y^{\prime}$ we have

$$
v^{*}\left(M_{Y^{\prime}}\right)=M_{Y^{\prime \prime}}
$$

where $B_{Y^{\prime}}, M_{Y^{\prime}}$ and $M_{Y^{\prime \prime}}$ are the discriminant and the moduli parts of the lc-trivial fibrations induced by the base change.
Let $f:(X, B) \rightarrow Y$ be an lc-trivial fibration. Set:

$$
\begin{equation*}
D=-(\varphi)=r\left(K_{X / Y}+B-f^{*}\left(B_{Y}+M_{Y}\right)\right) \tag{1.1}
\end{equation*}
$$

Then we can define $\pi: \tilde{X} \rightarrow X$ as the normalization of X in $k(X)\left(\sqrt[r]{1_{D}}\right)$ (see [3, §8.10.3] for the general construction). Moreover we have

$$
\pi_{*} \mathcal{O}_{\tilde{X}}=\bigoplus_{i=0}^{r} L^{-i}(\lfloor i D / r\rfloor) ; \quad \pi_{*} \omega_{\tilde{X}}=\bigoplus_{i=0}^{r} \omega_{X} \otimes L^{i}(-\lfloor i D / r\rfloor) .
$$

The Galois group of the extension $k(X) \subseteq k(X)\left(\sqrt[r]{1_{D}}\right)$ acts on $\pi_{*} \mathcal{O}_{\tilde{X}}$ by $\sqrt[r]{1_{D}} \mapsto \zeta \cdot \sqrt[r]{1_{D}}$ where ζ is an r-th primitive root of unity. The eigensheaf corresponding to ζ is $L^{-1}(\lfloor D / r\rfloor)$.

Let B be a divisor such that (X, B) is lc over the generic point of Y. We can suppose that $K_{X}+B$ has simple normal crossing support and set E the sum of all the horizontal lc-centers of (X, B) that dominate Y. Set $\tilde{E}=\pi^{*} E$, then

$$
\pi_{*}\left(\omega_{\tilde{X} / Y} \otimes \mathcal{O}_{\tilde{X}}(\tilde{E})\right)=\bigoplus_{i=0}^{r-1} \mathcal{O}_{X}\left(\left\lceil(1-i) K_{X / Y}-i B+E+i f^{*} B_{Y}+i f^{*} M_{Y}\right\rceil\right)
$$

The eigensheaf of ζ in $\pi_{*}\left(\omega_{\tilde{X} / Y} \otimes \mathcal{O}_{\tilde{X}}(\tilde{E})\right)$ is $\mathcal{O}_{X}\left(\left\lceil-B+E+f^{*} B_{Y}+f^{*} M_{Y}\right\rceil\right)$. Let V be a non-singular model of \tilde{X} and let $h: V \rightarrow Y$ be the induced morphism. Set $g: V \rightarrow X$ and $B_{V}=g^{*}\left(K_{X}+B\right)-K_{V}$. In [2, p. 245] are stated the following properties for $h:\left(V, B_{V}\right) \rightarrow Y$:

- The field extension $k(V) / k(X)$ is Galois and its Galois group G is cyclic of order r. There exists $\psi \in k(V)$ such that $\psi^{r}=\varphi$. A generator of G acts by $\psi \mapsto \zeta \psi$, where ζ is a fixed primitive r-th root of unity.
- The relative \log pair $h:\left(V, B_{V}\right) \rightarrow Y$ satisfies all properties of an lc-trivial fibration, except that the rank of $f_{*} \mathcal{O}_{X}\left(\left\lceil\mathbb{A}^{*}\left(V, B_{V}\right)\right\rceil\right)$ might be bigger than one.
- Both $f:(X, B) \rightarrow Y$ and $h:\left(V, B_{V}\right) \rightarrow Y$ induce the same discriminant and moduli part on Y.

The canonical bundle formula for $h:\left(V, B_{V}\right) \rightarrow Y$ is:

$$
\begin{equation*}
K_{V}+B_{V}+(\psi)=h^{*}\left(K_{Y}+B_{Y}+M_{Y}\right) \tag{1.2}
\end{equation*}
$$

Let E_{V} be the sum of all the centers of $\left(V, B_{V}\right)$.
By taking a log resolution of the pairs (X, B) and $\left(V, B_{V}\right)$ and a resolution of Y, we can assume that the log smoothness hypotheses of [7, pp. 262-263] and [10, p. 334] are verified (cf. [2, p. 245]). We will refer to this set of properties as the SNC setting.

Lemma 1.2. The following properties hold for the above set-up:
(1) The group G acts naturally on $h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)$. The eigensheaf corresponding to the eigenvalue ζ is $\tilde{\mathcal{L}}:=f_{*} \mathcal{O}_{X}(\Gamma-B+E+$ $\left.\left.f^{*} B_{Y}+f^{*} M_{Y}\right\rceil\right)$.
(2) Assume that $h: V \rightarrow Y$ is semi-stable in codimension one. Then M_{Y} is an integral divisor, $\tilde{\mathcal{L}}$ is semi-positive and $\tilde{\mathcal{L}}=O_{Y}\left(M_{Y}\right) \cdot \psi$.

Proof. Since (φ) has SNC support, the variety \tilde{X} has canonical singularities and

$$
h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)=f_{*} \pi_{*}\left(\omega_{\tilde{X} / Y} \otimes \mathcal{O}_{\tilde{X}}(\tilde{E})\right)
$$

The action on $h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)$ is induced by the one on $\pi_{*}\left(\omega_{\tilde{X} / Y} \otimes \mathcal{O}_{\tilde{X}}(\tilde{E})\right)$, thus the eigensheaf of ζ is:

$$
\tilde{\mathcal{L}}=f_{*} \mathcal{O}_{X}\left(\left\lceil-B+E+f^{*} B_{Y}+f^{*} M_{Y}\right\rceil\right)
$$

This completes the proof of item (1).
We claim that there exists $Y^{\dagger} \subseteq Y$, an open set such that $\operatorname{codim}(Y \backslash) Y^{\dagger} \geqslant 2$ and $\left.\left(-B_{V}+E_{V}+h^{*} B_{Y}\right)\right|_{h^{-1} Y^{\dagger}}$ is effective and supports no fibers. Indeed, since h is semistable, using the same notation as in [6] or [1, p. 14], there exists j_{0} such that $\gamma_{p}=1-b_{j_{0}}$ (here $w_{j}=1$ for any j).

Then $1-\gamma_{p}-b_{j_{0}}=0$ and $-B_{V}+h^{*} B_{Y}$ does not contain the fiber over p. Since E_{V} is horizontal, the same reasoning holds for $-B_{V}+E_{V}+h^{*} B_{Y}$.

For the effectivity, from formula (1.2) we deduce that the coefficients of $\left(B_{V}\right)^{h}$ are integer, thus they are either 1 or negative. Then $\left(-B_{V}+E_{V}+h^{*} B_{Y}\right)^{h}=\left(-B_{V}+E_{V}\right)^{h}$ is effective. The effectivity of $\left(-B_{V}+E_{V}+h^{*} B_{Y}\right)^{v}=\left(-B_{V}+h^{*} B_{Y}\right)^{v}$ follows from [6], [1, p. 14]. Let H be a general fiber of h. By restricting formula (1.2) to H, we get:

$$
\left(\left.\psi\right|_{H}\right)+K_{H}+\left.E_{V}\right|_{H}=-\left.\left(B_{V}-E_{V}\right)\right|_{H} \geqslant 0
$$

This implies that there exists an open subset $U \subseteq Y$ such that $\left.\left((\psi)+K_{V / Y}+E_{V}\right)\right|_{U} \geqslant 0$ and ψ is a rational section of $h_{*} \mathcal{O}\left(K_{V / Y}+E_{V}\right)$. Moreover, since by the action of G we have $\psi \mapsto \zeta \psi$, the function ψ is a rational section of $\tilde{\mathcal{L}}$ the eigensheaf of ζ. The sheaf $\tilde{\mathcal{L}}$ has rank one because for general $y \in Y$, we have $\tilde{\mathcal{L}}_{y} \cong H^{0}\left(F,\left.\left\lceil-B+E+f^{*} B_{Y}+f^{*} M_{Y}\right\rceil\right|_{F}\right)=$ $H^{0}\left(F,\left.\lceil-B+E\rceil\right|_{F}\right)$ and the last one is a rank one \mathbb{C}-vector space by [2, Definition 2.1(2)]. Thus we can consider $\tilde{\mathcal{L}}$ as a subsheaf of $k(X) \psi$. We prove now that $\left.\tilde{\mathcal{L}}\right|_{Y_{\dagger}}=\left.\mathcal{O}_{Y}\left(M_{Y}\right) \psi\right|_{Y_{\dagger}}$.

Since $\left.\left(-B_{V}+E_{V}+h^{*} B_{Y}\right)\right|_{h^{-1}\left(Y^{\dagger}\right)}$ is effective and $h^{*} M_{Y}-B_{V}+E_{V}+h^{*} B_{Y}=K_{V / Y}+E_{V}$, we have:

$$
\left.\left.h^{*} \mathcal{O}_{V}\left(M_{Y}\right)\right|_{h^{-1}\left(Y^{\dagger}\right)} \subseteq \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)\right|_{h^{-1}\left(Y^{\dagger}\right)}
$$

and

$$
\left.\left.h_{*} h^{*} \mathcal{O}_{V}\left(M_{Y}\right)\right|_{Y^{\dagger}} \subseteq h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)\right|_{Y^{\dagger}}
$$

Now let $a \in k(Y)$ be such that $h^{*} a+K_{V / Y}+E_{V} \geqslant 0$. Since $\left.\left(-B_{V}+E_{V}+h^{*} B_{Y}\right)\right|_{h^{-1}\left(Y^{\dagger}\right)}$ contains no fibers we have $h^{*} a+$ $h^{*} M_{Y} \geqslant 0$, thus $\left.\left.h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)\right|_{Y^{\dagger}} \subseteq h_{*} h^{*} \mathcal{O}_{V}\left(M_{Y}\right)\right|_{Y^{\dagger}}$. Then $\left.h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E_{V}\right)\right|_{Y^{\dagger}}=\left.h_{*} h^{*} \mathcal{O}_{V}\left(M_{Y}\right)\right|_{Y^{\dagger}}$.

By considering the action of G, we obtain the equality between the eigensheaves of ζ. From now on the proof follows exactly the same lines as [2, Lemma 5.2].

Lemma 1.3 (Theorem 4.3 [2]). There exists a finite Galois cover $\tau: Y^{\prime} \rightarrow Y$ from a non-singular variety Y^{\prime} which admits a simple normal crossings divisor supporting $\tau^{-1}\left(\Sigma_{Y}\right)$ and the locus where τ is not étale, and such that $h^{\prime}: V^{\prime} \rightarrow Y^{\prime}$ is semi-stable in codimension one for some set-up $\left(V^{\prime}, B_{V^{\prime}}\right) \rightarrow\left(X^{\prime}, B_{X^{\prime}}\right) \rightarrow Y^{\prime}$ induced by base change.

The following theorem is a generalization of Theorem 4.4 in [2]. It has been proved in [4] by using variation of mixed Hodge structures. Here we give a proof based on variation of Hodge structures.

Theorem 1.4. Let $f:(X, B) \rightarrow Y$ be an lc-trivial fibration and let $D=\sum_{i=1}^{N} D_{i}$ be the sum of the horizontal lc-centers of (X, B). Assume that:

- we are in the SNC setting;
- the monodromies of $R^{i} f_{0 *} \mathbb{C}_{X_{0} \backslash D_{0}}$ are unipotent $\forall i$ where $Y_{0}=Y \backslash \Sigma_{Y}, X_{0}=f^{-1} Y_{0}, D_{0}=D \cap X_{0}, f_{0}=\left.f\right|_{X_{0} \backslash D_{0}}$.

Let $\rho: Y^{\prime} \rightarrow Y$ be a projective morphism from a non-singular variety Y^{\prime} such that $\rho^{-1} \Sigma_{Y}$ is a simple normal crossings divisor. Let $X^{\prime} \rightarrow\left(X \times Y^{\prime}\right)_{\text {main }}$ be a resolution of the component of $X \times Y^{\prime}$ which dominates Y^{\prime}, and let $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the fiber space induced by the base change. Then for any $i \geqslant 0$ there exists a natural isomorphism $\rho^{*} R^{i} f_{*} \omega_{X / Y}(D) \cong R^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}\left(D^{\prime}\right)$, where D^{\prime} is the strict transform of D, which extends the base change isomorphism over $Y \backslash \Sigma_{Y}$.

First we have to state a preliminary result.

Proposition 1.5 (Theorem 4.4(3) [2]). Let $f: X \rightarrow Y$ be a surjective morphism. Assume that X and Y are smooth and that the locus where f is not smooth is a simple normal crossings divisor Σ_{Y}. Let Y_{0} be $Y \backslash \Sigma_{Y}$, let X_{0} be $f^{-1} Y_{0}$ and $f=\left.f\right|_{X_{0}}$. Assume that the local systems $R^{i} f_{0 *} \mathbb{C}_{X_{0}}$ have unipotent monodromies around Σ_{Y} for any i. Let $\rho: Y^{\prime} \rightarrow Y$ and X^{\prime} be a projective morphism from a non-singular variety Y^{\prime} such that $\rho^{-1} \Sigma_{Y}$ is a simple normal crossings divisor. Let $X^{\prime} \rightarrow\left(X \times Y^{\prime}\right)_{\text {main }}$ be a resolution of the component of $X \times Y^{\prime}$ which dominates Y^{\prime}, and let $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced fiber space. Then for any $i \geqslant 0$ there exists a natural isomorphism $\rho^{*} R^{i} f_{*} \omega_{X / Y} \cong R^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}$.

Proof. Set $\Sigma_{Y^{\prime}}=\rho^{-1} \Sigma_{Y}, Y_{0}^{\prime}=Y^{\prime} \backslash \Sigma_{Y^{\prime}}, X_{0}^{\prime}=f^{\prime-1} Y_{0}^{\prime}$ and $f_{0}^{\prime}=\left.f^{\prime}\right|_{X_{0}^{\prime}}$. The locally free sheaves $H_{0}^{(i)}=R^{m+i} f_{0 *} \mathbb{C}_{X_{0}}$ and $H_{0}^{\prime(i)}=$ $R^{m+i} f_{0 *}^{\prime} \mathbb{C}_{X_{0}^{\prime}}$ are the underlying spaces of variation of Hodge structures of weight $m-i$. In [9, Theorem 2.6, p. 176] is proved that:

$$
\begin{aligned}
& R^{i} f_{*} \omega_{X / Y} \cong \\
& R^{i} f_{*}^{\prime} \omega^{b}\left(R^{m+i} Y^{\prime} f_{*} \mathbb{C}_{X_{0}}\right) \quad \forall i \geqslant 0 \\
& \mathcal{F}^{b}\left(R^{m+i} f_{*}^{\prime} \mathbb{C}_{X_{0}^{\prime}}\right) \quad \forall i \geqslant 0
\end{aligned}
$$

where the right side of the equality denotes the upper canonical extension of the bottom part of the Hodge filtration. Since $H_{0}^{(i)}$ has unipotent local monodromies, the upper canonical extensions coincide with the canonical extensions. Moreover, by the unipotent monodromies assumption, the canonical extension is compatible with base change by [8, Proposition 1, p. 4]. Hence by unicity of the extension the isomorphism $\rho^{*} R^{i} f_{0 *} \omega_{X_{0} / Y_{0}} \cong R^{i} f_{0 *}^{\prime} \omega_{X_{0}^{\prime} / Y_{0}^{\prime}}$ induces an isomorphism $\rho^{*} R^{i} f_{*} \omega_{X / Y} \cong$ $R^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}$.

Proof of Theorem 1.4. Let N be the number of irreducible components of D. We prove the statement by double induction on N and on the dimension d of the fiber.

If $N=0$ or $d=0$ the result follows from Proposition 1.5 . Suppose $N>0$ and consider the exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(\tilde{D}) \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{D_{1}}(D) \rightarrow 0 \tag{1.3}
\end{equation*}
$$

where $\tilde{D}=\sum_{i=2}^{N} D_{i}$. Set $\tilde{D}^{\prime}=\sum_{i=2}^{N} D_{i}^{\prime}$ and

$$
\begin{aligned}
& A_{i}=\rho^{*} R^{i} f_{*} \omega_{X / Y}(\tilde{D}), \quad B_{i}=\rho^{*} R^{i} f_{*} \omega_{X / Y}(D), \quad C_{i}=\rho^{*} R^{i} f_{*} \omega_{D_{1} / Y}(\tilde{D}) \\
& A_{i}^{\prime}=R^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}\left(\tilde{D}^{\prime}\right), \quad B_{i}^{\prime}=R^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}\left(D^{\prime}\right), \quad C_{i}^{\prime}=R^{i} f_{*}^{\prime} \omega_{D_{1}^{\prime} / Y^{\prime}}\left(\tilde{D}^{\prime}\right) .
\end{aligned}
$$

We have a commutative diagram with exact lines:

The morphisms β and ε are isomorphisms by the inductive hypothesis on N. The morphisms α and δ are isomorphisms by the inductive hypothesis on d. Then, by the snake lemma, also γ is an isomorphism.

Lemma 1.6. Let $\gamma: Y^{\prime} \rightarrow Y$ be a generically finite projective morphism from a non-singular variety Y^{\prime}. Assume there exists a simple normal crossings divisor $\Sigma_{Y^{\prime}}$ on Y^{\prime} which contains $\gamma^{-1} \Sigma_{Y}$, and the locus where γ is not étale. Let $M_{Y^{\prime}}$ be the moduli part of the induced set-up $\left(V^{\prime}, B_{V^{\prime}}\right) \rightarrow\left(X^{\prime}, B_{X^{\prime}}\right) \rightarrow Y^{\prime}$. Then $\gamma^{*}\left(M_{Y}\right)=M_{Y^{\prime}}$.

Proof. The proof is exactly the same as that of [2, p. 248]. We just replace $\gamma^{*} h_{*} \mathcal{O}_{V}\left(K_{V / Y}\right)$ with $\gamma^{*} h_{*} \mathcal{O}_{V}\left(K_{V / Y}+E\right)$ and $h_{*}^{\prime} \mathcal{O}_{V^{\prime}}\left(K_{V^{\prime} / Y^{\prime}}\right)$ with $h_{*}^{\prime} \mathcal{O}_{V^{\prime}}\left(K_{V^{\prime} / Y^{\prime}}+E^{\prime}\right)$ and we apply Theorem 1.4 instead of [2, Theorem 4.4].

We now give a sketch of the proof of Theorem 1.1.
Proof of Theorem 1.1. The proof follows the same lines as in [2, p. 249]. We give a sketch here for the reader's convenience. We can suppose that we are in an SNC setting,

$$
\left(V^{\prime}, B_{V}\right) \rightarrow\left(X^{\prime}, B\right) \rightarrow Y^{\prime}
$$

In particular Y^{\prime} is smooth and the divisors $M_{Y^{\prime}}$ and $K_{Y^{\prime}}+B_{Y^{\prime}}$ are \mathbb{Q}-Cartier.
Now we prove that $M_{Y^{\prime}}$ is nef. By Lemma 1.3 there exists a finite morphism $\tau: \bar{Y}^{\prime} \rightarrow Y^{\prime}$ such that $\bar{h}^{\prime}: \bar{V}^{\prime} \rightarrow \bar{Y}^{\prime}$ is semistable in codimension one. By Lemma 1.2, the divisor $M_{\bar{Y}^{\prime}}$ is integral and nef. Since τ is finite we can apply [2, Proposition 5.5] and have $\tau^{*} M_{Y^{\prime}}=M_{\bar{Y}^{\prime}}$. Again, since τ is finite and $M_{\bar{Y}^{\prime}}$ is nef, also $M_{Y^{\prime}}$ is nef.

Finally, by Lemma 1.6, for any birational morphism $v: Y^{\prime} \rightarrow Y$ we have $v^{*} M_{Y^{\prime}}=M_{Y^{\prime \prime}}$.

Acknowledgements

This work is part of my Ph.D. thesis. I would like to thank my advisor, Gianluca Pacienza, for his support, for his guidance and for being a constant source of inspiration.

References

[1] F. Ambro, The Adjunction Conjecture and its applications, PhD thesis, The Johns Hopkins University, 1999, preprint, arXiv:math.AG/9903060.
[2] F. Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004) 229-255.
[3] A. Corti, Flips for 3-Folds and 4-Folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, UK, 2007.
[4] O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (3) (2004) 453-479.
[5] O. Fujino, Y. Gongyo, On the moduli b-divisors of lc-trivial fibrations, arXiv:1210.5052.
[6] Y. Kawamata, Subadjunction of log canonical divisors, II, Amer. J. Math. 120 (1998) 893-899.
[7] Y. Kawamata, Characterization of Abelian varieties, Compos. Math. 43 (2) (1981) 253-276.
[8] Y. Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982) 57-71.
[9] J. Kollár, Higher direct images of dualizing sheaves II, Ann. of Math. (2) 124 (1) (1986) 171-202.
[10] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in: Algebraic Varieties and Analytic Varieties, in: Adv. Stud. Pure Math., vol. 1, 1983, pp. 329-353.

