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We provide details for the proof of Fujita’s second theorem and prove that for a Kähler
fibre space f : X → B over a smooth projective curve B , the direct image of the relative
dualizing sheaf V := f∗ωX/B is the direct sum of an ample and a unitary flat bundle. We
also show that V needs not be semiample, which is our main result.
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r é s u m é

Nous donnons des détails sur la démonstration du second théorème de Fujita et nous
montrons que l’image directe du fibré canonique relatif V := f∗ωX/B d’une fibration
f : X → B sur une courbe B est la somme directe d’un fibré vectoriel ample et d’un fibré
vectoriel unitairement plat si l’espace total X est une variété kählérienne compacte. Nous
montrons en outre que V n’est en général pas semi-ample, ce qui constitue notre résultat
principal.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

An important progress in classification theory was stimulated by a theorem of Fujita, who showed [3] that if X is a
compact Kähler manifold and f : X → B is a fibration onto a smooth projective curve B (i.e., f has connected fibres), then
the direct image of the relative dualizing sheaf V := f∗ωX |B is a numerically semipositive vector bundle on B (over a curve,
this is equivalent to saying that the bundle is nef). In this note, which is an abridged version of the article [1], we study
further properties of V , related to semipositivity.

Recall that a vector bundle V on a curve is numerically semipositive if and only if every quotient bundle Q of V has
degree deg(Q ) � 0, and V is ample if and only if every quotient bundle Q of V has degree deg(Q ) > 0 ([9], Theorem 2.4,
cf. [1], Prop. 7, see also [15]). In the note [4], Fujita announced the following stronger result (in fact, a flat unitary bundle is
numerically positive, cf. [1], Thm. 9):
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Theorem 1.1 (Fujita’s second theorem). Let f : X → B be a fibration of a compact Kähler manifold X over a projective curve B, and
consider the direct image sheaf V := f∗ωX |B . Then V splits as a direct sum V = A ⊕ Q , where A is an ample vector bundle and Q is
a unitary flat bundle.1

Fujita sketched the proof, but referred to a forthcoming article concerning the positivity of the so-called local exponents
which however did not appear since. A first purpose of this article is to outline in Section 2 the missing details for the
proof of the second theorem of Fujita, which are fully given in [1]. It is important to have in mind Fujita’s second theorem
in order to understand the question posed by Fujita in 1982 ([10], Problem 5): Is the direct image V := f∗ωX |B semi-ample?
In our particular case, where V = A ⊕ Q with A ample and Q unitary flat, it simply means that the representation of the
fundamental group ρ : π1(B) → U (r,C) associated with the flat bundle Q has finite image ([1], Thm. 9). The second aim of
this article is to outline the proof of [1], Thm. 3, stating that this question has a negative answer:

Theorem 1.2. There exists a surface X endowed with a fibration f : X → B onto a curve B of genus � 3, and with fibres of genus 6,
such that V := f∗ωX |B splits as a direct sum V = A ⊕ Q 1 ⊕ Q 2 , where the summands Q i (i = 1,2) are flat unitary rank-2 bundles
having infinite monodromy group and where A is ample. In particular, V is not semi-ample.

2. Fujita’s second theorem

Let B be a smooth complex projective curve. A holomorphic vector bundle over it is identified with its sheaf of holomor-
phic sections. Assume now that f : X → B is a fibration of a compact Kähler manifold X over B , and consider the invertible
sheaf ω := ωX |B =OX (K X − f ∗K B). By Hironaka’s theorem, there is a sequence of blow ups with smooth centres π : X̂ → X

such that f̂ := f ◦ π : X̂ → B has the property that all singular fibres F are such that F = ∑
i mi Fi , and Fred = ∑

i F i is a

normal crossing divisor. Since π∗O X̂ (K X̂ ) =OX (K X ), we obtain f̂∗ω X̂ |B = f̂∗O X̂ (K X̂ − f̂ ∗K B) = f∗OX (K X − f ∗K B) = f∗ωX |B .
Therefore, we shall assume that all the reduced fibres of f are normal crossing divisors. By [12], there exists a cyclic Galois
covering of B , B ′ → B = B ′/G , such that the normalization X ′′ of the fibre product B ′ ×B X admits a resolution X ′ → X ′′ such
that the resulting fibration f ′ : X ′ → B ′ has all the fibres which are reduced and normal crossing divisors. It is proved in [1],
Prop. 13, that the sheaf V ′ := f ′∗ωX ′|B ′ is a subsheaf of the sheaf u∗(V ), where V := f∗ωX |B , and the cokernel u∗(V )/V ′ is
concentrated on the set of points corresponding to singular fibres of f ′ . In particular, since V and V ′ are semipositive by
Fujita’s first theorem, if V ′ satisfies the property that for each degree 0 quotient bundle Q ′ of V ′ then there is a splitting V ′ = E ′ ⊕ Q ′
for the projection p : V ′ → Q ′ and Q ′ is unitary flat, then V ′ splits as the direct sum V ′ = A ⊕ Q , where A is an ample vector bundle
and Q is flat unitary bundle, and the same conclusion holds also for V (cf. [1], Prop. 13).

Theorem 2.1. (See Fujita, [4].) Let f : X → B be a fibration of a compact Kähler manifold X over a projective curve B, and consider the
direct image sheaf V := f∗ωX |B . Then V splits as a direct sum V = A ⊕ Q , where A is an ample vector bundle and Q is a unitary flat
bundle.

Proof. By the above discussion it suffices to prove the theorem in the semistable case. Let n be the dimension of X . Let V ∗
denote the restriction of V to the noncritical locus B∗ of f and let H∗ = (H∗,∇, F ) denote the variation of polarized Hodge
structures underlying the local system Rn−1 f∗(C) such that V ∗ = F n−1(H∗). Let DH be the canonical extension of H∗ to B ,
characterized in the semistable case by the nilpotence of the residue matrices of ∇ at the singular points. By the results of
Schmid [17], the Hodge filtration extends to a holomorphic filtration of DH, also denoted by F , and it is proved in [11] (cf.
also [14]) that V = F n−1(DH). The restriction to V ∗ of the polarization on H∗ induces the structure of a Hermitian vector
bundle on V ∗ . By [19], Prop. 4.4, for each singular point s ∈ S := B \ B∗ , there exists a basis of V given by elements σ j such
that their norm in the flat metric outside the punctures grows at most logarithmically (cf. [8]). Hence, for each quotient
bundle Q of V , with Q ∗ denoting the restriction of Q to B∗ , the determinant det(Q ) admits a metric h with growth at
most logarithmic at the punctures s ∈ S . By [11], Lemma 5, and [16], Prop. 3.4, the degree deg(det(Q )) of Q is hence given
by the integral of the first Chern form c1(det(Q ),h) = Θh of the singular metric. One has (see [6], Lecture 2):

ΘV ∗ = ΘH∗ |V ∗ + σ̄ tσ = σ̄ tσ ,

with σ denoting the second fundamental form. Griffiths proves ([5], cf. [6], Corollary 5) that the curvature of the dual (V ∗)∨
is semi-negative, since its local expression is of the form ih′(z)dz̄ ∧ dz, where h′(z) is a semipositive definite Hermitian
matrix (cf. [1], Section 2, for a discussion on the various notions of curvature positivity). In particular, the curvature ΘV ∗ of
V ∗ is semipositive. The dual of the principle ‘curvature decreases in Hermitian subbundles’ [7] implies that the curvature
of Q ∗ is also semipositive. Therefore we can conclude that, since deg(Q ) = 0, the quotient Q ∗ carries a flat connection.
Moreover, using the Hermitian splitting, we can view Q ∗ as a subbundle of V ∗ . Since the local monodromy of Q ∗ at the

1 We remark that, while unitary flatness of a bundle implies numerical semipositivity, flatness alone does not, as shown by the following result
([1], Thm. 4): Let f : X → B be a Kodaira fibration, i.e., X is a surface and all the fibres of f are smooth curves not all isomorphic to each other. Then the direct
image sheaf V := f∗ωX |B has strictly positive degree hence H := R1 f∗(C) ⊗OB is a flat bundle which is not numerically semipositive.
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singular points s ∈ S is unipotent (the fibration f being semistable) and moreover unitary, the local monodromy at each
s ∈ S is trivial. Hence we conclude that Q ∗ has a flat extension to B which we denote by Q̂ . This extension is tautologically
the canonical extension of Q ∗ and hence we can view Q̂ as a subbundle of DH. Since Q ∗ ⊆ F n−1(H∗), we have the
inclusion Q̂ ⊂ V = F n−1(DH) ⊂ DH, and we obtain a homomorphism ψ : Q̂ → Q composing the inclusion Q̂ → V with
the surjection V → Q . From the fact that ψ is an isomorphism over B∗ , we infer that ψ is an isomorphism: since det(ψ)

is not identically zero, and is a section of a degree zero line bundle. Hence we conclude that the composition of ψ−1 with
the inclusion Q̂ → V gives then the desired splitting of the surjection V → Q . �
3. A counterexample to Fujita’s question

Consider the fibration of projective curves ϕ : Y → P
1[x0,x1] =: P defined by the minimal resolution of singularities of

Σ → P , where Σ is the singular μ7-Galois cover of P
1[y0:y1] × P (μ7 denoting the cyclic group of order 7), given by the

equation:

z7
1 = y1 y0(y1 − y0)(x0 y1 − x1 y0)

4x3
0.

Let P∗ = P \ {0,1,∞} and let ϕ̃ : Y ∗ → P∗ denote the restriction of ϕ to ϕ−1(P∗) =: Y ∗ . The group μ7 acts fibrewise
on the family and V := ϕ∗(ωY /P ) as well as H∗ = R1ϕ̃∗CY ∗ ⊗ OP∗ splits according to the eigenspaces for the characters

χ j : μ7 −→ C
∗ , σ �−→ e

2π i j
7 ( j = 0,1, . . . ,6) (we shall denote by V j , resp. H∗

j , the χ j-eigensheaf of V , resp. H∗). The

fibres H∗
j (x) of H∗

j over a point x ∈ P∗ are the vector spaces H1(Cx,C)χ j , which have dimension 2, and we have V j(x) =
H0(Cx,Ω

1
Cx

)χ j ⊆H∗
j (x) for x ∈ P∗ . It is proven in [1] that in the case j = 1 there is a basis of H0(Cx,Ω

1
Cx

)χ1 given by η and
yη, where (in affine coordinates):

η = y− 6
7 (y − 1)−

6
7 (x − y)−

3
7 dy. (1)

This implies that for any x ∈ P∗ there is an equality V 1(x) = H∗
1(x) which implies an equality of rank-2 vector bundles

H∗
1 = V ∗

1 := V 1|P∗ (cf. [2]). The Gauß–Manin connection ∇1 on H∗
1 = V ∗

1 (restriction of the Gauß–Manin connection on H∗
to H∗

1) is a flat connection whose local horizontal sections are integrals of the form g(x) = ∫
η (x ∈ P∗), where η is as in (1).

By [13], pp. 163–169, the function g(x) is a solution of the Gauß hypergeometric differential equation D( 8
7 , 3

7 , 9
7 ) associated

with the hypergeometric function 2 F1(
8
7 , 3

7 , 9
7 ; x). This implies that ∇1 is isomorphic to the connection associated with

D( 8
7 , 3

7 , 9
7 ). The differential equation D( 8

7 , 3
7 , 9

7 ) is non-resonant and hence irreducible. Therefore the monodromy group of
∇1 is irreducible. Moreover, by the Riemann scheme of D( 8

7 , 3
7 , 9

7 ) (computed as in [13], p. 164) the local monodromy of ∇1
at the punctures 0,1 ∈ P is a homology of order 7 and hence is of order 7 in the associated projective linear group. Hence,
by the results of Schwarz [18], the monodromy of ∇1 is infinite. Consider now a ramified covering ψ : B → P , locally at each
branch point 0,1,∞ of type x �→ x7, and let ψ̃ : B∗ := ψ−1(P∗) → P∗ denote the restriction of ψ to ψ−1(P∗). Let f : X → B
be the minimal resolution of the fibre product B ×P Y → B . Again, the cyclic group μ7 acts fibrewise on X and it follows
fibre-by-fibre that the restriction of the χ1-eigensheaf ( f∗ωX/B)χ1 to B∗ coincides with the pullback of the flat bundle
ψ̃∗(V ∗

1 ). The fibration f has only three singular fibres, but around them the local monodromy of ( f∗ωX/B)χ1 |B∗ = ψ̃∗(V ∗
1 )

is trivial, because the local monodromy of ∇1 at 0,1,∞ is of order 7. Therefore the vector bundle ( f∗ωX/B)χ1 |B∗ extends to
a vector bundle Q 1 ⊆ f∗ωX/B on B carrying a flat connection. But since the monodromy of ∇1 is infinite, the monodromy
of the flat connection on Q 1 is also infinite. Hence Q 1 is a flat (and unitary) summand in f∗ωX/B with infinite monodromy.
The same arguments can be carried out for the character χ2, leading to another flat summand Q 2 in f∗ωX/B having also
infinite monodromy, and hence leading to the proof of Theorem 1.2.
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