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The purpose of this Note is to prove a formula relating the hypoelliptic Ray–Singer metric
and the Milnor metric on the determinant of the cohomology of a compact Riemannian
manifold by a Witten-like deformation of the hypoelliptic Laplacian in de Rham theory.
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r é s u m é

L’objet de cette Note est de démontrer une formule reliant les métriques de Ray–
Singer hypoelliptique et de Milnor sur le déterminant de la cohomologie d’une variété
riemannienne compacte par une déformation à la Witten du laplacien hypoelliptique en
théorie de de Rham.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a compact manifold of dimension n. Let (F ,∇ F ) be a complex flat vector bundle on X . Let H ·(X, F ) be the
cohomology of the sheaf of locally flat sections of F . If E is a vector space of dimension m, set det E = Λm E . We define the
determinant of cohomology of F by λ := ⊗n

i=0(det Hi(X, F ))(−1)i
.

Let gTX be a Riemannian metric on X , and let g F be a Hermitian metric on F . When g F is flat, it was conjectured by Ray
and Singer [9], and was proved by Cheeger [5] and Müller [8] that the elliptic Ray–Singer metric on λ (which is obtained
via elliptic Hodge theory) and the Reidemeister metric on λ (which is obtained combinatorially) coincide.

In [3], using the Witten deformation [11], Bismut and Zhang extended this result to an arbitrary g F . Let f : X → R be
a Morse function with a Morse–Smale gradient field Z . With the Thom–Smale complex (C ·(W u, F ), ∂) associated with the
flow ẋ = −Z , we can associate another metric ‖ · ‖M,2

λ,Z on λ, called the Milnor metric. Bismut and Zhang gave a formula
relating the elliptic Ray–Singer metric and the Milnor metric. In this way, they gave a new proof of the Cheeger–Müller
Theorem.

In [1,2], Bismut and Lebeau constructed a hypoelliptic deformation of the elliptic Hodge theory. Let X ∗ be the total space
of the cotangent bundle T ∗ X . The hypoelliptic Laplacian, which depends on a parameter b > 0, is an operator acting on X ∗ .
When b → 0, in the proper sense, it deforms the elliptic Hodge Laplacian on X . The authors also constructed the hypoelliptic
Ray–Singer metric on λ, which is proved to be independent of b > 0 and to coincide with the elliptic Ray–Singer metric.
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In this Note, we announce a direct proof, detailed in [10], of a formula relating the hypoelliptic Ray–Singer metric and
the Milnor metric on λ. Combining this with the result of Bismut–Zhang [3], we obtain the result of Bismut–Lebeau [2].
In our proof we do not use the fact that the hypoelliptic Laplacian deforms the elliptic Laplacian.

2. Hypoelliptic Laplacian and hypoelliptic Ray–Singer metric

We use the notation in the Introduction. Let π : X ∗ → X be the canonical projection. We denote by p ∈ C∞(X ∗,
π∗(T ∗ X)) the tautological section. Let (Ω ·(X ∗,π∗ F ),dX

∗
) be the obvious de Rham complex.

Set H(x, p) = |p|2/2. For b > 0, take Hb =H/b2. In [1, (2.98)], to the function Hb , Bismut associated a non-degenerated
Hermitian form h

Ω ·(X ∗,π∗ F )

Hb
of signature (∞,∞) on Ω ·

c(X ∗,π∗ F ), the space of compactly supported forms on X ∗ .

Let A2
φ,Hb

be the Hodge Laplacian associated with this Hermitian form h
Ω ·(X ∗,π∗ F )

Hb
. Then A2

φ,Hb
is an h

Ω ·(X ∗,π∗ F )

Hb
formally

self-adjoint operator acting on Ω ·(X ∗,π∗ F ).
Bismut also introduced an operator A

′,2
φb,H conjugated to A2

φ,Hb
. Let ∇V be the fiberwise derivation along the fibres of

T ∗ X , and let �V be the fiberwise Laplacian. Let Y be the generator of geodesic flow on X ∗ . When F = C, the restriction of
2A′,2

φb,H to C∞(X ∗) is given by 1
2b2 (−�V + |p|2 − n) − 1

b ∇Y . More generally, on forms of higher degree, 2A′,2
φb,H coincides

with this expression up to terms of order 0. The operator A
′,2
φb,H is neither elliptic nor classically self-adjoint. By [6], it is

hypoelliptic. In [1,2], the authors proved that many consequences of classical Hodge theory still hold true for the hypoelliptic
theory. They constructed a non-degenerated Hermitian form ‖ · ‖RS,2

λ,b on λ via the analytic torsion of A′,2
φb,H , and proved in

[2, Theorem 9.0.1] that for any b > 0, ‖ · ‖RS,2
λ,b is a metric and equals to the elliptic Ray–Singer metric.

3. Our main result

Let ∇TX be the Levi-Civita connection on (TX, gTX). Let ψ(TX,∇TX) be the Mathai–Quillen current [7] defined on the total
space of the tangent bundle TX. By [3, Remark 3.8], Z∗ψ(TX,∇TX) is a well-defined current of degree n −1 on X with values
in o(TX), the orientation bundle on X . Set θ(∇ F , g F ) = Tr[(g F )−1∇ F g F ] ∈ Ω1(X). The main result of [10] is as follows.

Theorem 3.1. For b > 0, we have:

log

(‖ · ‖RS,2
λ,b

‖ · ‖M,2
λ,Z

)
= −

∫
X

θ
(∇ F , g F )

Z∗ψ
(
TX,∇TX)

. (1)

Proof. By [2, Theorem 6.7.1], ‖ · ‖RS,2
λ,b is independent of b > 0, and we know the explicit variation of ‖ · ‖RS,2

λ,b as a function of

the metrics gTX and g F . By the same arguments as in [3, Section VII.b], to establish Theorem 3.1, we need only to obtain it
for a particular quadruplet (b, gTX, g F , Z).

Let {xα}1�α�l be the critical points of f . For 1 � α � l, we denote by nα the Morse index at xα . We suppose that on a
neighborhood Uα of xα , we have local coordinates (y1, . . . , yn) such that for y ∈ Uα ,

f (y) = f (xα) − 1

2

nα∑
i=1

(
yi)2 + 1

2

n∑
i=nα+1

(
yi)2

, gTX
y =

n∑
i=1

(
dyi)2

, ∇ F g F
y = 0, (2)

and that ∇ f , the gradient of f with respect to gTX , is Morse–Smale. In [10], we establish (1) for the quadruplet
(b0, gTX, e−2T0 f g F ,∇ f ) in the case where b0 > 0 is small enough and T0 > 0 is big enough.

The key step in our proof is to relate the Milnor metric ‖ · ‖M,2
λ,∇ f with the asymptotic limit of the hypoelliptic Ray–Singer

metric associated with (b, gTX, e−2T f g F ), when b → 0, T → ∞ and b2T = b2
0T0. This is obtained by establishing a canonical

isomorphism between the Thom–Smale complex (C ·(W u, F ), ∂) and a subcomplex of (Ω ·(X ∗,π∗ F ),dX
∗
) induced by the

small eigenvalues of the hypoelliptic Laplacian associated with (b, gTX, e−2T f g F ). We will explain this step in more detail in
the following sections.

The proof of Theorem 3.1 is completed by the standard arguments of [3] and by refining the hypoelliptic local index
techniques developed in [2], which we remark for the right side of (1). �
4. A Witten-like deformation of the hypoelliptic Laplacian

For b > 0, T � 0, let Lb,T be the operator 2A′,2
φb,H when g F is replaced by e−2T f g F . Take Hb,T = Hb + T f .

By [1, Remark 2.37], Lb,T coincides with 2A′,2
φb,H1,T

which is conjugated to 2A2
φ,Hb,T

. When F = C, the restriction of Lb,T to

C∞(X ∗) is given by:
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1

2b2

(−�V + |p|2 − n
) − 1

b

(∇Y − T ∇V
∇ f

)
. (3)

Let S ·(X ∗,π∗ F ) be the subspace of Ω ·(X ∗,π∗ F ) consisting of elements with rapid decay along the fibers T ∗ X ,
and with derivatives of any orders with rapid decay. We consider Lb,T as an operator with domain S ·(X ∗,π∗ F ).
By [2, Theorem 15.5.1], it is closable, and its closure is a maximal operator with compact resolvent. We still denote by
Lb,T the corresponding closure.

For c > 0 and λ1 > 0, set Wc,λ1 = {λ1 + σ + iτ ∈ C: σ � c|τ |1/8}. Let Ω
·,[0,1]
b,T (X ∗,π∗ F ) be the direct sum of the charac-

teristic spaces of 2A2
φ,Hb,T

for the eigenvalues in [0,1]. We suppose that ( f , gTX, g F ) satisfy the conditions in (2). Inspired

by [4], we show in [10] the following result:

Theorem 4.1. Given κ > 0, M > 0 such that M > κ , there exist c0 > 0, c1 > 0, c2 > 0, λ1 > c0,b0 > 0, T0 > 0, such that for 0 <

b � b0, T � T0, κ � b2T � M, we have Sp(2b2 Lb,T ) ⊂ [0, c0e−c1 T ] ∪Wc2,λ1 . Moreover, if ∇ f is Morse–Smale, then for b > 0 small

enough and T > 0 big enough such that κ � b2T � M, we have a canonical isomorphism of complex (Ω
·,[0,1]
b,T (X ∗,π∗ F ),dX

∗
) �

(C ·(W u, F ), ∂).

Proof. The main difficulty is that when T → ∞,b → 0 and b2T ∈ [κ, M], from (3), we cannot deduce an obvious localization
for characteristic forms of Lb,T associated with small eigenvalues. For ε > 0, set Lε,b,T = e−εbT ∇p f Lb,T eεbT ∇p f . When F = C,
by (3), the restriction of Lε,b,T to C∞(X ∗) is given by:

1

2b2

(−�V + 〈p|1 − 2εb2T ∇TX∇ f |p〉 − n
) + εT 2(1 − ε/2)|d f |2 − 1

b

(∇Y − T (1 − ε)∇V
∇ f

)
. (4)

For ε > 0 small enough, when b2T ∈ [κ, M], the term 〈p|1 − 2εb2T ∇TX∇ f |p〉 is positive. When T → ∞, the term
εT 2(1 − ε/2)|d f |2 becomes very large outside a neighborhood of the critical points. Although the harmonic oscillator
−�V + 〈p|1 − 2εb2T ∇TX∇ f |p〉 − n acquires negative eigenvalues, this phenomenon is compensated by εT 2(1 − ε/2)|d f |2.

Now the difficulty is concentrated over the neighborhood of the critical points of f . We deduce Theorem 4.1 by some
detailed and explicit calculations, which will be explained in the next section. �
5. The model operator near the critical points

Let X = R equipped with the trivial metric and with its canonical orientation. Take F = R also equipped with the trivial
metric. Let H ·,+(R) (resp. H ·,−(R)) be the cohomology (resp. with compact support) of R. Then we have the canonical
isomorphisms λ± = det(H ·,±(R)) = R. Set f ±(y) = ±y2/2.

The Witten Laplacian [11] and [3, Section V.b] is then given by − ∂2

∂ y2 + T 2 y2 ∓ T ±2T dy i∂/∂ y . Then H ·,±(R) can be iden-

tified with the kernel of this operator. By a direct computation, the elliptic Ray–Singer metric coincides with the canonical
metric on λ± = R.

Let L±
b,T be the operator Lb,T which we considered before in this special case. Our operator L±

b,T is the model of the
operator Lb,T of Section 4 near the critical points of f . We have the identity:

L±
b,T = 1

2b2

(
− ∂2

∂ p2
+ p2 − 1 + 2 dp i ∂

∂ p

)
− 1

b

(
p

∂

∂ y
∓ T y

∂

∂ p

)
± T (dy − dp)i ∂

∂ y + ∂
∂ p

. (5)

In [10], we show Sp L±
b,T = 1+

√
1∓4b2 T
2b2 N∓ −1+

√
1∓b2 T

2b2 N. We calculate explicitly the kernel of L±
b,T , and we identify this kernel

with H ·,±(R). We show that the hypoelliptic Ray–Singer metric is still equal to the canonical metric on λ± = R. This fact
plays an important role in our proof of Theorem 3.1.
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