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Let Sn = K [[x1, . . . , xn]] be the algebra of power series over a field K of characteristic
zero, S

c
n be the group of continuous automorphisms of Sn with constant Jacobian, and

Divc
n be the Lie algebra of derivations of Sn with constant divergence. We prove that

AutLie(Divc
n) = AutLie,c(Divc

n) � S
c
n .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit Sn = K [[x1, . . . , xn]] l’algèbre des séries formelles sur un corps K de caractéristique
zéro, Sc

n le groupe des automorphismes continus de Sn de jacobien constant et Divc
n

l’algèbre de Lie des dérivations de Sn à divergence constante. Nous montrons les identités
AutLie(Divc

n) = AutLie,c(Divc
n) � Sc

n .
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, K is a field of characteristic zero and K ∗ is its group of units, and the following notation is fixed:

• Pn := K [x1, . . . , xn] is a polynomial algebra, Gn := AutK-alg(Pn) is the group of automorphisms of Pn , Sn :=
K [[x1, . . . , xn]] is the algebra of power series over K , m := (x1, . . . , xn), S∗

n is the group of units of Sn ,
• Sn := AutK-alg,c(Sn) is the group of continuous (with respect to the m-adic topology) automorphisms of Sn and S

c
n :=

{σ ∈ Sn |J (σ ) ∈ K } where J (σ ) is the Jacobian of σ ,
• ∂1 := ∂

∂x1
, . . . , ∂n := ∂

∂xn
are the partial derivatives (K -linear derivations) of Sn ,

• sn := DerK (Sn) = ⊕n
i=1 Sn∂i is the Lie algebras of K -derivations of Sn where [∂, δ] := ∂δ − δ∂ , and Dn := DerK (Pn) =⊕n

i=1 Pn∂i ,
• Dn := ⊕n

i=1 K∂i ,
• H1 := x1∂1, . . . , Hn := xn∂n ,
• for a derivation ∂ = ∑n

i=1 ai∂i ∈ sn , div(∂) := ∑n
i=1

∂ai
∂xi

is the divergence of ∂ ,
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• div0
n := {∂ ∈ Dn | div(∂) = 0} and Div0

n := {∂ ∈ sn | div(∂) = 0} are the Lie algebras of polynomial, respectively, formally
analytic vector fields (derivations) with zero divergence,

• Gn := AutLie(div
0
n) and Ĝn := AutLie(Div0

n),
• divc

n := {∂ ∈ Dn | div(∂) ∈ K } and Divc
n := {∂ ∈ sn | div(∂) ∈ K } are the Lie algebras of polynomial, respectively, formally

analytic vector fields (derivations) with constant divergence,
• Gc

n := AutLie(div
c
n) and Ĝc

n := AutLie(Divc
n).

2. The groups of automorphisms of the Lie algebras div0
n and divc

n

Let Sh1 := {sμ ∈ AutK-alg(K [x]) | sμ(x) = x + μ,μ ∈ K }.

Theorem 2.1. (See [3,1].)

Gn �
{

G1/Sh1 � K ∗ if n = 1,

Gn if n � 2.

Theorem 2.1 was announced in [3], where a sketch of the proof is given based on a study of certain Lie subalgebras of
div0

n of finite codimension.

Theorem 2.2. (See [1].) Gc
n � Gn.

3. The groups of automorphisms of the Lie algebras Div0
n and Divc

n

Theorem 3.1. (See [2,3].) Ĝn � S
c
n for n � 2.

The aim of the paper is to prove the following theorem.

Theorem 3.2.

Ĝc
n �

{
G1 if n = 1,

S
c
n if n � 2.

Proof. For n = 1, Divc
1 = K∂1 ⊕ K H1 = divc

1 and so Ĝc
1 = Gc

1 = G1, by Theorem 2.2. So, let n � 2.

(i) S
c
n ⊆ Ĝc

n via the group monomorphism (Theorem 3.1 and Theorem 5.1):

S
c
n → Ĝc

n, σ �→ σ : ∂ �→ σ(∂) := σ∂σ−1.

(ii) Div0
n = [Divc

n,Divc
n]: The equality follows from the fact that Div0

n is a simple Lie algebra which is an ideal of the Lie
algebra Divc

n and Divc
n = Div0

n ⊕ K H1.
(iii) The short exact sequence of group homomorphisms:

1 → F := FixĜc
n

(
Div0

n

) → Ĝc
n

res→ Ĝn → 1

is exact (by (i) and Theorem 3.1) where res : σ �→ σ |
Div0

n
is the restriction map, see (ii).

(iv) Since Ĝn = S
c
n (Theorem 3.1) and S

c
n ⊆ Ĝc

n (by (i)), the short exact sequence splits:

Ĝc
n � Ĝn � F . (1)

(v) F = {e} (Lemma 5.2). Therefore, Ĝc
n � S

c
n . �

The Lie algebra Divc
n is a topological Lie algebra with respect to the m-adic topology, i.e. the set {miDivc

n}i∈N is a base of
open neighbourhoods of zero. Let Ĝc

n,top be group of automorphisms of the topological Lie algebra Divc
n . Clearly, Ĝc

n,top ⊆ Ĝc
n .

The inverse inclusion follows from Theorem 3.2.

Corollary 3.3. Ĝc
n,top = Ĝc

n.

4. The group Sn

Every continuous automorphism σ ∈ Sn is uniquely determined by the elements:

x′ := σ(x1), . . . , x′
n := σ(xn)
1
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that necessarily (by the continuity of σ ) belong to the maximal ideal m of the algebra Sn , and for all series f =
f (x1, . . . , xn) ∈ Sn , σ( f ) = f (x′

1, . . . , x′
n). Let Mn(Sn) be the algebra of n × n matrices over Sn . The matrix J (σ ) :=

( J (σ )i j) ∈ Mn(Sn), where J (σ )i j = ∂x′
j

∂xi
, is called the Jacobian matrix of σ and its determinant J (σ ) := det J (σ ) is called

the Jacobian of σ . So, the jth column of J (σ ) is the gradient grad x′
j := (

∂x′
j

∂x1
, . . . ,

∂x′
j

∂xn
)T of the series x′

j . Then the derivations:

∂ ′
1 := σ∂1σ

−1, . . . , ∂ ′
n := σ∂nσ

−1

are the partial derivatives of Sn with respect to the variables x′
1, . . . , x′

n ,

∂ ′
1 = ∂

∂x′
1
, . . . , ∂ ′

n = ∂

∂x′
n
. (2)

Every derivation ∂ ∈ sn is a unique sum ∂ = ∑n
i=1 ai∂i where ai = ∂ ∗ xi ∈ Sn . Let ∂ := (∂1, . . . , ∂n)T and ∂ ′ := (∂ ′

1, . . . , ∂
′
n)T

where T stands for the transposition. Then

∂ ′ = J (σ )−1∂, i.e. ∂ ′
i =

n∑
j=1

(
J (σ )−1)

i j∂ j for i = 1, . . . ,n. (3)

In more detail, if ∂ ′ = A∂ where A = (aij) ∈ Mn(Sn), i.e. ∂i = ∑n
j=1 aij∂ j . Then for all i, j = 1, . . . ,n,

δi j = ∂ ′
i ∗ x′

j =
n∑

k=1

aik

∂x′
j

∂xk

where δi j is the Kronecker delta function. The equalities above can be written in the matrix form as A J (σ ) = 1, where 1 is
the identity matrix. Therefore, A = J (σ )−1.

For all σ ,τ ∈ Sn ,

J (στ ) = J (σ ) · σ (
J (τ )

)
. (4)

By taking the determinants of both sides of (4), we have a similar equality of the Jacobians: for all σ ,τ ∈ Sn ,

J (στ ) = J (σ ) · σ (
J (τ )

)
. (5)

By putting τ = σ−1 in (4) and (5), we see that J (σ ) ∈ GLn(Sn), J (σ ) ∈ S∗
n , and

J
(
σ−1) = σ−1( J (σ )−1), (6)

J
(
σ−1) = σ−1(J (σ )−1). (7)

Sn = {
σ ∈ EndK-alg,c(Sn)

∣∣ J (σ ) ∈ S∗
n

} = {
σ ∈ EndK-alg,c(Sn)

∣∣ σ(x) = Ax + · · · , A = (aij) ∈ GLn(K )
}
,

that is σ(xi) = ∑n
j=1 aij x j + · · ·, where the three dots mean smaller terms (· · · ∈m2).

Lemma 4.1. For all σ ∈ S
c
n,

n∑
j=1

∂ j ∗ (
J (σ )−1)

i j = 0 for i = 1, . . . ,n.

Proof. By (3), ∂ ′
i = ∑n

i=1( J (σ )−1)i j∂ j . By Theorem 3.1, we have the result. �
5. The divergence commutes with automorphisms Sc

n

The following theorem shows that the divergence commutes with automorphisms S
c
n , i.e. the divergence map div : sn →

Sn is an S
c
n-module homomorphism.

Theorem 5.1. For all σ ∈ S
c
n and ∂ ∈ sn,

div
(
σ(∂)

) = σ
(
div(∂)

)
.
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Proof. Let ∂ = ∑n
i=1 ai∂i where ai ∈ Sn . Then ∂ ′ = σ∂σ−1 = ∑n

i=1 σ(ai)∂
′
i where, by (3), ∂ ′

i = ∑n
j=1( J (σ )−1)i j∂ j . Now, by

Lemma 4.1,

div
(
∂ ′) =

n∑
i, j=1

∂ j ∗ ((
J (σ )−1)

i jσ(ai)
) =

n∑
i=1

(
n∑

j=1

∂ j ∗ (
J (σ )−1)

i j

)
· σ(ai) +

n∑
i=1

n∑
j=1

(
J (σ )−1)

i j∂ j ∗ σ(ai)

=
n∑

i=1

∂ ′
i ∗ σ(ai) =

n∑
i=1

σ∂iσ
−1σ(ai) = σ

(
n∑

i=1

∂i(ai)

)
= σ

(
div(∂)

)
. �

Lemma 5.2. FixĜc
n
(Div0

n) = {e} for n � 2.

Proof. Let σ ∈ F := FixĜc
n
(Div0

n), H ′
1 := σ(H1), . . . , H ′

n := σ(Hn). Since Divc
n = Div0

n ⊕ K Hi , i = 1, . . . ,n, it suffices to show
that σ(Hi) = Hi for i = 1, . . . ,n. For i 
= j, σ(Hi − H j) = Hi − H j , and so d := H ′

i − Hi = H ′
j − H j . For all i = 1, . . . ,n,

[∂i,d] = σ
([∂i, Hi]

) − [∂i, Hi] = σ(∂i) − ∂i = ∂i − ∂i = 0.

So, d ∈ CDivc
n
(Dn) =Dn (since Csn (Dn) =Dn) and d = ∑n

i=1 λi∂i for some λi ∈ K where CG(H) := {g ∈ G | [g,H] = 0} is the
centralizer of a subset H of a Lie algebra G . The elements H ′

1 = H1 + d, . . . , H ′
n = Hn + d commute, hence d = 0. Therefore,

σ = e. �
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