Differential geometry

The GBC mass for asymptotically hyperbolic manifolds ${ }^{\text {«/ }}$

La masse de Gauss-Bonnet-Chern sur des variétés asymptotiquement hyperboliques

Yuxin Ge^{a}, Guofang Wang ${ }^{\mathrm{b}}$, Jie Wu ${ }^{\text {b,c }}$
a Laboratoire d'analyse et de mathématiques appliquées, CNRS UMR 8050, Département de mathématiques, Université Paris-Est-Créteil-Val-de-Marne, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
${ }^{\text {b }}$ Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany
c School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, PR China

A R T I C L E I N F O

Article history:

Received 9 May 2013
Accepted 27 November 2013
Available online 31 December 2013
Presented by the Editorial Board

Abstract

By using the Gauss-Bonnet curvature, we introduce a higher-order mass, the Gauss-Bonnet-Chern mass, for asymptotically hyperbolic manifolds and show that it is a geometric invariant. Moreover, we prove a positive mass theorem for this new mass for asymptotically hyperbolic graphs. Then, we prove the weighted Alexandrov-Fenchel inequalities in the hyperbolic space \mathbb{H}^{n} for any horospherical convex hypersurface Σ. As an application, we obtain an optimal Penrose-type inequality for this new mass for asymptotically hyperbolic graphs with a horizon type boundary Σ, provided that a dominant energy condition $\widetilde{L}_{k} \geqslant 0$ holds.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

En utilisant la courbure de Gauss-Bonnet, on introduit une nouvelle masse d'ordre supérieur - la masse de Gauss-Bonnet-Chern -, sur des variétés asymptotiquement hyperboliques. On montre qu'il s'agit d'un invariant géométrique. On démontre également le théorème de masse positive sur des graphes sur l'espace hyperbolique \mathbb{H}^{n} et des inégalités d'Alexandrov-Fenchel à poids dans \mathbb{H}^{n} pour toute hypersurface convexe de type horosphérique. Ainsi, on obtient une inégalité de type Penrose optimale pour cette masse sur toute variété asymptotiquement hyperbolique qui est graphe sur \mathbb{H}^{n} avec un horizon au bord, à condition que la condition d'énergie dominante $\widetilde{L}_{k} \geqslant 0$ soit satisfaite.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Riemannian positive mass theorem (PMT), "Any asymptotically flat Riemannian manifold \mathcal{M}^{n} with a suitable decay order and with nonnegative scalar curvature has the nonnegative ADM mass", plays an important role in differential geometry. This theorem was first proved by Schoen and Yau [15] for manifolds of dimension $n \leqslant 7$ and later for spin manifolds by Witten [17] using spinors. A refinement of the PMT is the Riemannian Penrose inequality:

[^0]\[

$$
\begin{equation*}
m_{1}=m_{\mathrm{ADM}} \geqslant \frac{1}{2}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}} \tag{1.1}
\end{equation*}
$$

\]

where $m_{\text {ADM }}$ is the ADM mass of the asymptotically flat Riemannian manifold with a horizon Σ and $|\Sigma|$ denotes the area of Σ. (1.1), was proved by Huisken-Illmann [11] and Bray [1] for $n=3$. Later, Bray and Lee [2] generalized Bray's proof to the case $n \leqslant 7$. Recently, Lam [12] gave an elegant proof of PMT and (1.1) in all dimensions for an asymptotically flat manifold that can be realized as a graph in \mathbb{R}^{n+1}.

The ADM mass, together with the positive mass theorem, was generalized to asymptotically hyperbolic manifolds in [3,16,19]. For this asymptotically hyperbolic mass, the corresponding Penrose conjecture is: "For asymptotically hyperbolic manifold $\left(\mathcal{M}^{n}, g\right)$ with an outermost horizon Σ, its mass satisfies:

$$
\begin{equation*}
m_{1}^{\mathbb{H}}=m^{\mathbb{H}} \geqslant \frac{1}{2}\left\{\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n}{n-1}}\right\} \tag{1.2}
\end{equation*}
$$

provided that the dominant energy condition:

$$
\begin{equation*}
R_{g} \geqslant-n(n-1) \tag{1.3}
\end{equation*}
$$

holds". Here R_{g} denotes the scalar curvature of g. Recently, motivated by the work of Lam [12], Dahl, Gicquaud, and Sakovich [4], on the one hand, and de Lima and Girão [5], on the other hand, proved the Penrose inequality (1.2) for asymptotically hyperbolic graphs over \mathbb{H}^{n} with the help of a weighted hyperbolic Minkowski inequality, or a weighted hyperbolic Alexandrov-Fenchel inequality:

$$
\begin{equation*}
\int_{\Sigma} V H \mathrm{~d} \mu \geqslant(n-1) \omega_{n-1}\left\{\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n}{n-1}}\right\} \tag{1.4}
\end{equation*}
$$

if Σ is star-shaped and mean-convex (i.e. $H>0$), which was proved by de Lima and Girão [5].
Recently motivated by the Gauss-Bonnet gravity, we have introduced the Gauss-Bonnet-Chern mass m_{GBC} for asymptotically flat manifolds by using the following Gauss-Bonnet curvature:

$$
\begin{equation*}
L_{k}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} R_{i_{1} i_{2}}^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}{ }^{j_{2 k-1} j_{2 k}} \tag{1.5}
\end{equation*}
$$

where $R_{i j}{ }^{s l}$ is the Riemannian curvature tensor. One can check that L_{1} is just the scalar curvature R. For general k, it is just the Euler integrand in Chern's proof of the Gauss-Bonnet-Chern theorem if $n=2 k$. See a survey of Zhang [18]. A systematic study of L_{k} was first given by Lovelock [13]. The Gauss-Bonnet-Chern mass m_{GBC} for the asymptotically flat manifolds is defined in [6] by:

$$
\begin{equation*}
m_{k}=m_{\mathrm{GBC}}=\frac{(n-2 k)!}{2^{k-1}(n-1)!\omega_{n-1}} \lim _{r \rightarrow \infty} \int_{S_{r}} P_{(k)}^{i j l m} \partial_{m} g_{j l} \nu_{i} \mathrm{~d} \mu \tag{1.6}
\end{equation*}
$$

where ω_{n-1} is the volume of $(n-1)$-dimensional standard unit sphere and S_{r} is the Euclidean coordinate sphere, $\mathrm{d} \mu$ is the volume element on S_{r} induced by the Euclidean metric and v is the outward unit normal to S_{r} in \mathbb{R}^{n}. Here the (0,4)-tensor $P_{(k)}$ is defined by:

$$
\begin{equation*}
P_{(k)}^{s t l m}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-3} j_{2 k-2} j_{2 k-1} j_{2 k} i_{1} \cdots i_{12-3} i_{2 k-2} s t}^{i_{1} i_{2}} j_{1 j_{2}} \cdots R_{i_{2 k-3} i_{2 k-2}} j_{2 k-3} j_{2 k-2} g^{j_{2 k-1} l} g^{j_{2 k} m} \tag{1.7}
\end{equation*}
$$

This $(0,4)$-tensor $P_{(k)}$ has a crucial property that it is divergence-free, which guarantees that the Gauss-Bonnet-Chern mass is well defined and is a geometric invariant in [6]. In [6] and [7], we prove a positive mass theorem in the case where \mathcal{M} is an asymptotically flat graph over \mathbb{R}^{n} or \mathcal{M} is conformal to \mathbb{R}^{n}, respectively. For our mass m_{GBC}, a corresponding Penrose conjecture was proposed in [6]:

$$
\begin{equation*}
m_{k}=m_{\mathrm{GBC}} \geqslant \frac{1}{2^{k}}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{n-1}} \tag{1.8}
\end{equation*}
$$

Moreover, we proved in [6] that this conjecture is true for asymptotically flat graphs over $\mathbb{R}^{n} \backslash \Omega$ by using classical Alexandrov-Fenchel inequalities.

2. Hyperbolic Gauss-Bonnet-Chern mass and its Penrose inequality

In the paper [8], motivated by our previous work, by using the Gauss-Bonnet curvature we introduce a higher-order mass for asymptotically hyperbolic manifolds, which is a generalization of the mass introduced by Wang [16] and CruścielHerzlich [3]. See also [9,14,19]. However, if we use directly the Gauss-Bonnet curvature L_{k}, we can only obtain a mass proportional to the usual hyperbolic mass, rather than a new one. In order to define a higher-order mass for asymptotically hyperbolic manifolds, the crucial observation is a slight modification of the Gauss-Bonnet curvature. More precisely, on a Riemannian manifold $\left(\mathcal{M}^{n}, g\right)$, we consider a modified Riemann curvature tensor:

$$
\begin{equation*}
\widetilde{\operatorname{Riem}}_{i j l l}(g)=\widetilde{R}_{i j s l}(g):=R_{i j s l}(g)+g_{i s} g_{j l}-g_{i l} g_{j s} \tag{2.1}
\end{equation*}
$$

and a new Gauss-Bonnet curvature with respect to this tensor $\widetilde{\text { Riem: }}$:

$$
\begin{equation*}
\widetilde{L}_{k}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-1} j_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} \widetilde{R}_{i_{1} i_{2}}^{j_{1} j_{2}} \ldots \widetilde{R}_{i_{2 k-1} i_{2 k}}^{j_{2 k-1} j_{2 k}}=\widetilde{R}_{s t l m} \widetilde{P}_{(k)}^{s t l m} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{P}_{(k)}^{s t l m}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-3} j_{2 k-2} j_{2 k-1} j_{2 k}}^{i_{1} i_{2} i_{2 k-3} i_{i_{1} i_{2}}} \widetilde{2}_{1}^{j_{1} j_{2}} \cdots \widetilde{R}_{i_{2 k-3} i_{2 k-2}}{ }_{j 2 k-3} j_{2 k-2} g^{j_{2 k-1} l} g^{j_{2 k} m} \tag{2.3}
\end{equation*}
$$

The tensor $\widetilde{P}_{(k)}$ has also the crucial property of being divergence free, which enables us to define a new mass.
Let us assume now that $2 \leqslant k<\frac{n}{2}$. We first introduce a "higher-order" mass for asymptotically hyperbolic manifolds with slower decay.

Definition 2.1. Assume that $\left(\mathcal{M}^{n}, g\right)$ is an asymptotically hyperbolic manifold of decay order $\tau>\frac{n}{k+1}$ and for $V \in \mathbb{N}_{b}:=$ $\left\{V \in C^{\infty}\left(\mathbb{H}^{n}\right) \mid \operatorname{Hess}^{b} V=V b\right\}, V \widetilde{L}_{k}$ is integrable on $\left(\mathcal{M}^{n}, g\right)$. We define the Gauss-Bonnet-Chern mass integral with respect to the diffeomorphism Φ by:

$$
\begin{equation*}
H_{k}^{\Phi}(V)=\lim _{r \rightarrow \infty} \int_{S_{r}}\left(\left(V \bar{\nabla}_{l} e_{i j}-e_{i j} \bar{\nabla}_{l} V\right) \widetilde{P}_{(k)}^{m i j l}\right) v_{m} \mathrm{~d} \mu \tag{2.4}
\end{equation*}
$$

where $e_{i j}:=\left(\left(\Phi^{-1}\right)^{*} g\right)_{i j}-b_{i j}$ and $\bar{\nabla}$ denotes the covariant derivative with respect to the hyperbolic metric b.
This definition is motivated by the work of Chruściel and Herzlich [3]. See also [9,14,16,19].
Theorem 2.2. Suppose that $\left(\mathcal{M}^{n}, g\right)$ is an asymptotically hyperbolic manifold of decay order $\tau>\frac{n}{k+1}$ and for $V \in \mathbb{N}_{b}$, V \tilde{L}_{k} is integrable on $\left(\mathcal{M}^{n}, g\right)$, then the mass functional $H_{k}^{\Phi}(V)$ is well defined and does not depend on the choice of the coordinates at infinity used in the definition.

From the mass functional H_{k}^{Φ} on \mathbb{N}_{b}, we define a higher-order mass, the Gauss-Bonnet-Chern mass for asymptotically hyperbolic manifolds as follows:

$$
\begin{equation*}
m_{k}^{\mathbb{H}}:=c(n, k) \inf _{\mathbb{N}_{b} \cap\{V>0, \eta(V, V)=1\}} H_{k}^{\Phi}(V) \tag{2.5}
\end{equation*}
$$

where $c(n, k)=\frac{(n-2 k)!}{2^{k-1}(n-1)!\omega_{n-1}}$ is the normalization constant given in (1.6) and η is a Lorentz inner product. One may assume that the infimum in (2.5) is achieved by:

$$
V=V_{(0)}=\cosh r
$$

where r is the hyperbolic distance to a fixed point $x_{0} \in \mathbb{H}^{n}$. Therefore, we fix $V=V_{(0)}=\cosh r$.
Theorem 2.3 (Positive Mass Theorem). Let $\left(\mathcal{M}^{n}, g\right)=\left(\mathbb{H}^{n}, b+V^{2} \mathrm{~d} f \otimes \mathrm{~d} f\right)$ be the graph of a smooth asymptotically hyperbolic function $f: \mathbb{H}^{n} \rightarrow \mathbb{R}$ which satisfies $V \widetilde{L}_{k}$ is integrable and the graph $\left(\mathcal{M}^{n}, g\right)$ is asymptotically hyperbolic of decay order $\tau>\frac{n}{k+1}$. Then we have:

$$
\begin{equation*}
m_{k}^{\mathbb{H}}=c(n, k) \int_{\mathcal{M}^{n}} \frac{1}{2} \frac{V \widetilde{L}_{k}}{\sqrt{1+V^{2}|\bar{\nabla} f|^{2}}} \mathrm{~d} V_{g} . \tag{2.6}
\end{equation*}
$$

In particular, $\widetilde{L}_{k} \geqslant 0$ implies $m_{k}^{\mathbb{H}} \geqslant 0$.

The condition:

$$
\begin{equation*}
\tilde{L}_{k} \geqslant 0 \tag{2.7}
\end{equation*}
$$

is a dominant energy condition, like (1.3). Such a beautiful expression (2.6) was found first by Lam for the scalar curvature R for asymptotically flat graphs over \mathbb{R}^{n}, and was generalized for the Gauss-Bonnet curvature in [6]. Dahl, Gicquaud, and Sakovich [4] obtained this formula for $m_{1}^{\mathbb{H}}$ for asymptotically hyperbolic graphs in \mathbb{H}^{n}. See also the work of de Lima and Girão [5] and of Huang and Wu [10].

Furthermore, if the manifold is an asymptotically hyperbolic graph with a horizon boundary, we establish a relationship between our new mass and a weighted higher-order mean curvature, as follows.

Theorem 2.4. Let Ω be a bounded open set in \mathbb{H}^{n} with boundary $\Sigma=\partial \Omega$. Assume $\left(\mathcal{M}^{n}, g\right)=\left(\mathbb{H}^{n} \backslash \Omega, b+V^{2} \mathrm{~d} f \otimes \mathrm{~d} f\right)$ is an asymptotically hyperbolic manifold with a horizon Σ (i.e. $\partial \mathcal{M}=\partial \Omega \subset \mathcal{M}$ is minimal) which satisfies that $V \widetilde{L}_{k}$ is integrable. Moreover, assume that each connected component of Σ is in a level set of f and $|\bar{\nabla} f(x)| \rightarrow \infty$ as $x \rightarrow \Sigma$. Then:

$$
m_{k}^{\mathbb{H}}=c(n, k)\left(\frac{1}{2} \int_{\mathcal{M}^{n}} \frac{V \widetilde{L}_{k}}{\sqrt{1+V^{2}|\bar{\nabla} f|^{2}}} \mathrm{~d} V_{g}+\frac{(2 k-1)!}{2} \int_{\Sigma} V \sigma_{2 k-1} \mathrm{~d} \mu\right)
$$

where σ_{k} denotes k-th mean curvature of Σ induced by the hyperbolic metric b.
In order to obtain a Penrose-type inequality for the hyperbolic mass $m_{k}^{\mathbb{H}}$ for asymptotically hyperbolic graphs with a horizon, we need to establish a "weighted" hyperbolic Alexandrov-Fenchel inequality. A hypersurface in \mathbb{H}^{n} is horospherical convex if all principal curvatures are larger than or equal to 1 .

Theorem 2.5. Let Σ be a horospherical convex hypersurface in the hyperbolic space \mathbb{H}^{n}. We have:

$$
\begin{equation*}
\int_{\Sigma} V \sigma_{2 k-1} \mathrm{~d} \mu \geqslant C_{n-1}^{2 k-1} \omega_{n-1}\left(\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n}{k(n-1)}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{k(n-1)}}\right)^{k} \tag{2.8}
\end{equation*}
$$

Equality holds if and only if Σ is a centered geodesic sphere in \mathbb{H}^{n}.
When $k=1$, inequality (2.8) is just (1.4), which was proved by de Lima and Girão in [5]. These inequalities have their own interest in integral geometry as well as in differential geometry.

As a consequence of Theorems 2.4 and 2.5, the Penrose inequality for the Gauss-Bonnet-Chern mass $m_{k}^{\mathbb{H} \mathbb{I}}$ for asymptotically hyperbolic graphs with horizon boundaries follows.

Theorem 2.6 (Penrose Inequality). Let Ω be a bounded open set in \mathbb{H}^{n} and $\Sigma=\partial \Omega$. Assume $\left(\mathcal{M}^{n}, g\right)=\left(\mathbb{H}^{n} \backslash \Omega, b+V^{2} \mathrm{~d} f \otimes \mathrm{~d} f\right)$ is an asymptotically hyperbolic manifold with a horizon Σ which satisfies that $V \widetilde{L}_{k}$ is integrable. Moreover, suppose that each connected component of Σ is in a level set of f and $|\bar{\nabla} f(x)| \rightarrow \infty$ as $x \rightarrow \Sigma$. Assume that each connected component of Σ is horospherical convex, then:

$$
\begin{equation*}
m_{k}^{\mathbb{H}} \geqslant \frac{1}{2^{k}}\left(\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n}{k(n-1)}}+\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2 k}{k(n-1)}}\right)^{k} \tag{2.9}
\end{equation*}
$$

provided that

$$
\widetilde{L}_{k} \geqslant 0
$$

Moreover, equality is achieved by the anti-de Sitter Schwarzschild type metric:

$$
\begin{equation*}
g_{\mathrm{adS}-\mathrm{Sch}}=\left(1+\rho^{2}-\frac{2 m}{\rho^{\frac{n}{k}-2}}\right)^{-1} \mathrm{~d} \rho^{2}+\rho^{2} \mathrm{~d} \Theta^{2} \tag{2.10}
\end{equation*}
$$

which is a generalization of the ordinary one. Here $\rho=\sinh r$ and $\mathrm{d} \Theta^{2}$ is the round metric on \mathbb{S}^{n-1}.

References

[1] H.L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom. 59 (2001) 177-267.
[2] H.L. Bray, D.A. Lee, On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. J. 148 (2009) 81-106.
[3] P. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math. 212 (2003) 231-264.
[4] M. Dahl, R. Gicquaud, A. Sakovich, Penrose type inequalities for asymptotically hyperbolic graphs, Ann. Inst. Henri Poincaré 14 (5) (2013) 1135-1168.
[5] L.L. de Lima, F. Girão, An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality, arXiv:1209.0669.
[6] Y. Ge, G. Wang, J. Wu, A new mass for asymptotically flat manifolds, arXiv:1211.3645.
[7] Y. Ge, G. Wang, J. Wu, The Gauss-Bonnet-Chern mass of conformally flat manifolds, arXiv:1212.3213, to appear in Int. Math. Res. Not.
[8] Y. Ge, G. Wang, J. Wu, The GBC mass for asymptotically hyperbolic manifolds, preprint.
[9] M. Herzlich, Mass Formulae for Asymptotically Hyperbolic Manifolds, AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, Eur. Math. Soc., Zurich, 2005, pp. 103-121.
[10] L.-H. Huang, D. Wu, The equality case of the Penrose inequality for asymptotically flat graphs, arXiv:1205.2061.
[11] G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom. 59 (2001) 353-437.
[12] M.-K.G. Lam, The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions, arXiv:1010.4256.
[13] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498-501.
[14] B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (5) (2011) 052504.
[15] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979) 45-76.
[16] X. Wang, Mass for asymptotically hyperbolic manifolds, J. Differ. Geom. 57 (2001) 273-299.
[17] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 (1981) 381-402.
[18] W. Zhang, Lectures on Chern-Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, vol. 4, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
[19] X. Zhang, A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I, Commun. Math. Phys. 249 (2004) 529-548.

[^0]: मेत This project is partly supported by SFB/TR71 "Geometric partial differential equations" of DFG.
 E-mail addresses: ge@u-pec.fr (Y. Ge), guofang.wang@math.uni-freiburg.de (G. Wang), jie.wu@math.uni-freiburg.de (J. Wu).

