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By using the Gauss–Bonnet curvature, we introduce a higher-order mass, the Gauss–
Bonnet–Chern mass, for asymptotically hyperbolic manifolds and show that it is a
geometric invariant. Moreover, we prove a positive mass theorem for this new mass
for asymptotically hyperbolic graphs. Then, we prove the weighted Alexandrov–Fenchel
inequalities in the hyperbolic space H

n for any horospherical convex hypersurface Σ .
As an application, we obtain an optimal Penrose-type inequality for this new mass
for asymptotically hyperbolic graphs with a horizon type boundary Σ , provided that a
dominant energy condition L̃k � 0 holds.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

En utilisant la courbure de Gauss–Bonnet, on introduit une nouvelle masse d’ordre
supérieur – la masse de Gauss–Bonnet–Chern –, sur des variétés asymptotiquement
hyperboliques. On montre qu’il s’agit d’un invariant géométrique. On démontre également
le théorème de masse positive sur des graphes sur l’espace hyperbolique H

n et des
inégalités d’Alexandrov–Fenchel à poids dans H

n pour toute hypersurface convexe de type
horosphérique. Ainsi, on obtient une inégalité de type Penrose optimale pour cette masse
sur toute variété asymptotiquement hyperbolique qui est graphe sur H

n avec un horizon
au bord, à condition que la condition d’énergie dominante L̃k � 0 soit satisfaite.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Riemannian positive mass theorem (PMT), “Any asymptotically flat Riemannian manifold Mn with a suitable decay order
and with nonnegative scalar curvature has the nonnegative ADM mass”, plays an important role in differential geometry. This
theorem was first proved by Schoen and Yau [15] for manifolds of dimension n � 7 and later for spin manifolds by Witten
[17] using spinors. A refinement of the PMT is the Riemannian Penrose inequality:
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m1 = mADM � 1

2

( |Σ |
ωn−1

) n−2
n−1

, (1.1)

where mADM is the ADM mass of the asymptotically flat Riemannian manifold with a horizon Σ and |Σ | denotes the area
of Σ . (1.1), was proved by Huisken–Illmann [11] and Bray [1] for n = 3. Later, Bray and Lee [2] generalized Bray’s proof
to the case n � 7. Recently, Lam [12] gave an elegant proof of PMT and (1.1) in all dimensions for an asymptotically flat
manifold that can be realized as a graph in Rn+1.

The ADM mass, together with the positive mass theorem, was generalized to asymptotically hyperbolic manifolds in
[3,16,19]. For this asymptotically hyperbolic mass, the corresponding Penrose conjecture is: “For asymptotically hyperbolic
manifold (Mn, g) with an outermost horizon Σ , its mass satisfies:

mH

1 = mH � 1

2

{( |Σ |
ωn−1

) n−2
n−1

+
( |Σ |

ωn−1

) n
n−1

}
, (1.2)

provided that the dominant energy condition:

R g � −n(n − 1), (1.3)

holds”. Here R g denotes the scalar curvature of g . Recently, motivated by the work of Lam [12], Dahl, Gicquaud, and
Sakovich [4], on the one hand, and de Lima and Girão [5], on the other hand, proved the Penrose inequality (1.2) for
asymptotically hyperbolic graphs over Hn with the help of a weighted hyperbolic Minkowski inequality, or a weighted
hyperbolic Alexandrov–Fenchel inequality:

∫
Σ

V H dμ� (n − 1)ωn−1

{( |Σ |
ωn−1

) n−2
n−1

+
( |Σ |

ωn−1

) n
n−1

}
, (1.4)

if Σ is star-shaped and mean-convex (i.e. H > 0), which was proved by de Lima and Girão [5].
Recently motivated by the Gauss–Bonnet gravity, we have introduced the Gauss–Bonnet–Chern mass mGBC for asymptot-

ically flat manifolds by using the following Gauss–Bonnet curvature:

Lk := 1

2k
δ

i1i2···i2k−1 i2k
j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1 i2k

j2k−1 j2k , (1.5)

where Rij
sl is the Riemannian curvature tensor. One can check that L1 is just the scalar curvature R . For general k, it is just

the Euler integrand in Chern’s proof of the Gauss–Bonnet–Chern theorem if n = 2k. See a survey of Zhang [18]. A systematic
study of Lk was first given by Lovelock [13]. The Gauss–Bonnet–Chern mass mGBC for the asymptotically flat manifolds is
defined in [6] by:

mk = mGBC = (n − 2k)!
2k−1(n − 1)!ωn−1

lim
r→∞

∫
Sr

P i jlm
(k)

∂m g jlνi dμ, (1.6)

where ωn−1 is the volume of (n − 1)-dimensional standard unit sphere and Sr is the Euclidean coordinate sphere, dμ is the
volume element on Sr induced by the Euclidean metric and ν is the outward unit normal to Sr in Rn . Here the (0,4)-tensor
P (k) is defined by:

P stlm
(k) := 1

2k
δ

i1i2···i2k−3 i2k−2st
j1 j2··· j2k−3 j2k−2 j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−3 i2k−2

j2k−3 j2k−2 g j2k−1l g j2km. (1.7)

This (0,4)-tensor P (k) has a crucial property that it is divergence-free, which guarantees that the Gauss–Bonnet–Chern mass
is well defined and is a geometric invariant in [6]. In [6] and [7], we prove a positive mass theorem in the case where M
is an asymptotically flat graph over Rn or M is conformal to Rn , respectively. For our mass mGBC, a corresponding Penrose
conjecture was proposed in [6]:

mk = mGBC � 1

2k

( |Σ |
ωn−1

) n−2k
n−1

. (1.8)

Moreover, we proved in [6] that this conjecture is true for asymptotically flat graphs over Rn\Ω by using classical
Alexandrov–Fenchel inequalities.
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2. Hyperbolic Gauss–Bonnet–Chern mass and its Penrose inequality

In the paper [8], motivated by our previous work, by using the Gauss–Bonnet curvature we introduce a higher-order
mass for asymptotically hyperbolic manifolds, which is a generalization of the mass introduced by Wang [16] and Cruściel–
Herzlich [3]. See also [9,14,19]. However, if we use directly the Gauss–Bonnet curvature Lk , we can only obtain a mass
proportional to the usual hyperbolic mass, rather than a new one. In order to define a higher-order mass for asymptotically
hyperbolic manifolds, the crucial observation is a slight modification of the Gauss–Bonnet curvature. More precisely, on a
Riemannian manifold (Mn, g), we consider a modified Riemann curvature tensor:

R̃iemi jsl(g) = R̃ i jsl(g) := Rijsl(g) + gis g jl − gil g js (2.1)

and a new Gauss–Bonnet curvature with respect to this tensor R̃iem:

L̃k := 1

2k
δ

i1i2···i2k−1 i2k
j1 j2··· j2k−1 j2k

R̃ i1i2
j1 j2 · · · R̃ i2k−1 i2k

j2k−1 j2k = R̃stlm P̃ stlm
(k) , (2.2)

where

P̃ stlm
(k) := 1

2k
δ

i1i2···i2k−3 i2k−2st
j1 j2··· j2k−3 j2k−2 j2k−1 j2k

R̃ i1i2
j1 j2 · · · R̃ i2k−3 i2k−2

j2k−3 j2k−2 g j2k−1l g j2km. (2.3)

The tensor P̃ (k) has also the crucial property of being divergence free, which enables us to define a new mass.
Let us assume now that 2 � k < n

2 . We first introduce a “higher-order” mass for asymptotically hyperbolic manifolds with
slower decay.

Definition 2.1. Assume that (Mn, g) is an asymptotically hyperbolic manifold of decay order τ > n
k+1 and for V ∈ Nb :=

{V ∈ C∞(Hn) | Hessb V = V b}, V L̃k is integrable on (Mn, g). We define the Gauss–Bonnet–Chern mass integral with respect
to the diffeomorphism Φ by:

HΦ
k (V ) = lim

r→∞

∫
Sr

(
(V ∇̄lei j − eij∇̄l V ) P̃mi jl

(k)

)
νm dμ, (2.4)

where ei j := ((Φ−1)∗ g)i j − bij and ∇̄ denotes the covariant derivative with respect to the hyperbolic metric b.

This definition is motivated by the work of Chruściel and Herzlich [3]. See also [9,14,16,19].

Theorem 2.2. Suppose that (Mn, g) is an asymptotically hyperbolic manifold of decay order τ > n
k+1 and for V ∈ Nb, V L̃k is inte-

grable on (Mn, g), then the mass functional HΦ
k (V ) is well defined and does not depend on the choice of the coordinates at infinity

used in the definition.

From the mass functional HΦ
k on Nb , we define a higher-order mass, the Gauss–Bonnet–Chern mass for asymptotically

hyperbolic manifolds as follows:

mH

k := c(n,k) inf
Nb∩{V >0,η(V ,V )=1} HΦ

k (V ), (2.5)

where c(n,k) = (n−2k)!
2k−1(n−1)!ωn−1

is the normalization constant given in (1.6) and η is a Lorentz inner product. One may assume

that the infimum in (2.5) is achieved by:

V = V (0) = cosh r,

where r is the hyperbolic distance to a fixed point x0 ∈ Hn . Therefore, we fix V = V (0) = cosh r.

Theorem 2.3 (Positive Mass Theorem). Let (Mn, g) = (Hn,b + V 2d f ⊗ d f ) be the graph of a smooth asymptotically hyperbolic
function f : Hn → R which satisfies V L̃k is integrable and the graph (Mn, g) is asymptotically hyperbolic of decay order τ > n

k+1 .
Then we have:

mH

k = c(n,k)

∫
Mn

1

2

V L̃k√
1 + V 2|∇̄ f |2

dV g . (2.6)

In particular, L̃k � 0 implies mH � 0.
k
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The condition:

L̃k � 0, (2.7)

is a dominant energy condition, like (1.3). Such a beautiful expression (2.6) was found first by Lam for the scalar curvature
R for asymptotically flat graphs over Rn , and was generalized for the Gauss–Bonnet curvature in [6]. Dahl, Gicquaud, and
Sakovich [4] obtained this formula for mH

1 for asymptotically hyperbolic graphs in Hn . See also the work of de Lima and
Girão [5] and of Huang and Wu [10].

Furthermore, if the manifold is an asymptotically hyperbolic graph with a horizon boundary, we establish a relationship
between our new mass and a weighted higher-order mean curvature, as follows.

Theorem 2.4. Let Ω be a bounded open set in Hn with boundary Σ = ∂Ω . Assume (Mn, g) = (Hn \ Ω,b + V 2d f ⊗ d f ) is an
asymptotically hyperbolic manifold with a horizon Σ (i.e. ∂M = ∂Ω ⊂ M is minimal) which satisfies that V L̃k is integrable. More-
over, assume that each connected component of Σ is in a level set of f and |∇̄ f (x)| → ∞ as x → Σ . Then:

mH

k = c(n,k)

(
1

2

∫
Mn

V L̃k√
1 + V 2|∇̄ f |2

dV g + (2k − 1)!
2

∫
Σ

V σ2k−1 dμ

)
,

where σk denotes k-th mean curvature of Σ induced by the hyperbolic metric b.

In order to obtain a Penrose-type inequality for the hyperbolic mass mH

k for asymptotically hyperbolic graphs with a
horizon, we need to establish a “weighted” hyperbolic Alexandrov–Fenchel inequality. A hypersurface in Hn is horospherical
convex if all principal curvatures are larger than or equal to 1.

Theorem 2.5. Let Σ be a horospherical convex hypersurface in the hyperbolic space Hn. We have:

∫
Σ

V σ2k−1 dμ� C2k−1
n−1 ωn−1

(( |Σ |
ωn−1

) n
k(n−1)

+
( |Σ |

ωn−1

) n−2k
k(n−1)

)k

. (2.8)

Equality holds if and only if Σ is a centered geodesic sphere in Hn.

When k = 1, inequality (2.8) is just (1.4), which was proved by de Lima and Girão in [5]. These inequalities have their
own interest in integral geometry as well as in differential geometry.

As a consequence of Theorems 2.4 and 2.5, the Penrose inequality for the Gauss–Bonnet–Chern mass mH

k for asymptoti-
cally hyperbolic graphs with horizon boundaries follows.

Theorem 2.6 (Penrose Inequality). Let Ω be a bounded open set in Hn and Σ = ∂Ω . Assume (Mn, g) = (Hn \Ω,b + V 2d f ⊗ d f ) is
an asymptotically hyperbolic manifold with a horizon Σ which satisfies that V L̃k is integrable. Moreover, suppose that each connected
component of Σ is in a level set of f and |∇̄ f (x)| → ∞ as x → Σ . Assume that each connected component of Σ is horospherical
convex, then:

mH

k � 1

2k

(( |Σ |
ωn−1

) n
k(n−1)

+
( |Σ |

ωn−1

) n−2k
k(n−1)

)k

, (2.9)

provided that

L̃k � 0.

Moreover, equality is achieved by the anti-de Sitter Schwarzschild type metric:

gadS-Sch =
(

1 + ρ2 − 2m

ρ
n
k −2

)−1

dρ2 + ρ2 dΘ2, (2.10)

which is a generalization of the ordinary one. Here ρ = sinh r and dΘ2 is the round metric on Sn−1 .
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