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We characterize the measures on R which have both their support and spectrum uniformly
discrete. A similar result is obtained in R

n under a stronger discreteness restriction.
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r é s u m é

Nous caractérisons les mesures sur R ayant toutes les deux leurs support et spectre
uniformément discrets. Un résultat similaire est obtenu dans R

n sous une restriction de
discrétion plus forte.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction. Results

1.1. A set Λ ⊂ R
n is called uniformly discrete (u.d.) if

d(Λ) := inf
λ,λ′∈Λ,λ �=λ′

∣∣λ − λ′∣∣ > 0.

We consider a measure μ on R
n supported on a u.d. set Λ:

μ =
∑
λ∈Λ

μ(λ)δλ, μ(λ) �= 0, d(Λ) > 0. (1)

Assume that μ is a temperate distribution, and that its Fourier transform

μ̂(x) :=
∑
λ∈Λ

μ(λ)e−2π i〈λ,x〉

(in the sense of distributions) is also a measure, supported by a u.d. set S:

μ̂ =
∑
s∈S

μ̂(s)δs, μ̂(s) �= 0, d(S) > 0. (2)

The set S is the spectrum of the measure μ.
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The classical Poisson summation formula provides an example of such a situation:

μ =
∑
k∈Zn

δk. (3)

In this case μ̂ = μ.
Kahane and Mandelbrojt [4] studied the problem (in one dimension), which other summation formulas of Poisson type

may exist.
There is a conjecture (see, e.g., [7]) that (3) is essentially the only possible example of a measure μ satisfying (1)

and (2). Namely, that the support of such a measure is contained in a finite union of translates of a (full-rank) lat-
tice.

Under the assumption that all the masses μ(λ) are equal, or take only finitely many different values, such results were
proved in [8, p. 25], [2], [5]. The proofs are based on the Cohen–Helson theorem on idempotent measures. See also [1].

The aim of the present note is to sketch a proof of the conjecture above. For n = 1 it is obtained in all generality, while
for n > 1 under a stronger “quasi-regularity” condition on the spectrum.

Theorem 1. Let μ be a measure on R satisfying (1) and (2). Then the support Λ is contained in a finite union of translates of a certain
lattice. The same is true for S (with the dual lattice).

Theorem 2. Let μ be a measure on R
n, n > 1, satisfying (1) and (2), and such that S − S is a u.d. set. Then the conclusion of Theorem 1

holds.

The following proposition completes the results, describing the explicit form of μ.

Theorem 3. Let μ be a measure on R
n, n � 1, satisfying (1) and (2), and such that Λ is contained in a finite union of translates of a

lattice L. Then μ is of the form

μ =
N∑

j=1

c j

∑
�∈L

ei〈θ j ,�〉 δ�+ω j (4)

where ω j , θ j are vectors in R
n, and c j are complex numbers (1 � j � N).

Conversely, every measure μ of the form (4) satisfies (1) and (2).

2. Proof of Theorem 1

Here we sketch the proof of Theorem 1. We consider a measure μ on R
n satisfying (1) and (2). Only in Section 2.3 the

specifics of the one-dimensional case are used.

2.1. We will use the following notation: for h ∈ Λ − Λ, denote

Λh := Λ ∩ (Λ − h) = {λ ∈ Λ: λ + h ∈ Λ}.

Lemma 1. For every h ∈ Λ − Λ and r > 0, there is a non-zero finite measure νh supported by Λh, whose spectrum lies in the
r-neighborhood of the set S − S.

Proof. Multiply μ by a function ϕ > 0 in the Schwartz class, whose spectrum lies in the ball Br := {x ∈ R
n: |x| < r}. Since

μ is a temperate distribution, this yields another measure

μ1 =
∑
λ∈Λ

c(λ)δλ

such that

(i) c(λ) �= 0,
∑ |c(λ)| < ∞;

(ii) spec(μ1) ⊂ S + Br .

Consider the Fourier transform of μ1:

f (x) :=
∑

c(λ)e−2π i〈λ,x〉.

λ∈Λ
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Clearly, f is a bounded, continuous function on R
n , and vanishes outside of S + Br .

For u ∈R
n , set:

g(x, u) := f (x + u) f (x) =
∑
λ∈Λ

∑
λ′∈Λ

c(λ)c
(
λ′)e2π i(〈λ′−λ,x〉−〈λ,u〉)

=
∑

h∈Λ−Λ

e2π i〈h,x〉
[ ∑

λ∈Λh

c(λ)c(λ + h)e−2π i〈λ,u〉
]
.

Denote the quantity in brackets by Ah(u). Clearly

g(x, u) =
∑

h∈Λ−Λ

Ah(u)e2π i〈h,x〉

vanishes identically (with respect to x) for each

u ∈ U := R
n∖[

(S − S) + B2r
]
.

It follows that Ah(u) = 0 (u ∈ U ). Consider the measure

νh :=
∑
λ∈Λh

c(λ)c(λ + h)δλ,

then we have ν̂h = Ah . It follows that ν̂h(u) = 0 (u ∈ U ). �
2.2. Notice that if r is sufficiently small, then the set U above contains a ball centered near zero, of radius a = a(S) > 0.

So νh is a finite non-zero measure with a spectral gap of radius a.

Corollary. The set Λ (and S) in (1), (2) cannot be rationally independent.

We refer to [4] where several conclusions concerning the arithmetical structure of Λ, S are obtained in the one-
dimensional setting.

2.3. In a recent paper [11], a characterization is given of u.d. sets in R that may support a finite measure with a spectral
gap of given size, in terms of the lower Beurling–Malliavin density.

For our goal a simple necessary condition is enough, which admits an independent proof, similar to the one used in [13,
pp. 1044–1045].

Lemma 2. If a u.d. set Λ ⊂R supports a measure with a spectral gap of size a > 0, then

D#(Λ) := lim inf
R→∞

#(Λ ∩ B R)

|B R | > c
(
a,d(Λ)

)
> 0. (5)

2.4.

Lemma 3. If Λ ⊂ R
n is a u.d. set such that D#(Λh) > c(Λ) > 0 (h ∈ Λ − Λ), then

D+(Λ − Λ) < ∞. (6)

Here

D+(Λ) := lim sup
R→∞

sup
x∈Rn

#(Λ ∩ (x + B R))

|B R |
is the Kahane–Beurling upper uniform density.

2.5. Now we need the concepts of Delone and Meyer sets in R
n .

Definition. Λ is called a Delone set if Λ is u.d. and relatively dense.

Definition. Λ is called a Meyer set if the following two conditions are satisfied:
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(i) Λ is a Delone set;
(ii) There is a finite set F such that Λ − Λ ⊂ Λ + F .

Lagarias [6] proved that if Λ is a Delone set and Λ − Λ is u.d., then Λ is a Meyer set (see also [12]). Using a similar
argument one can prove:

Lemma 4. If Λ is a Delone set such that D+(Λ − Λ) < ∞, then Λ is a Meyer set.

2.6.

Lemma 5. If Λ is a Meyer set and if

D+(Λh) > c(Λ) > 0 (h ∈ Λ − Λ) (7)

then Λ is contained in a finite union of translates of a lattice.

Proof. By a theorem of Meyer [9, Sections II.5, II.14] (see also [12]) we have Λ ⊂ M + F , where F is a finite set and M is a
“model set”. The latter means that there is a lattice Γ ⊂ R

n ×R
m (m � 0) and a bounded set Ω ⊂ R

m such that

M = M
(
R

n ×R
m,Γ,Ω

) := {
p1(γ ): γ ∈ Γ, p2(γ ) ∈ Ω

}
, (8)

where p1 : Rn ×R
m → R

n and p2 : Rn ×R
m → R

m are the canonical projections, p1 restricted to Γ is injective, and p2(Γ )

is dense in R
m .

Thus any λ ∈ Λ admits a representation

λ = p1(γλ) + uλ, γλ ∈ Γ, p2(γλ) ∈ Ω, uλ ∈ F .

Let E := {p2(γλ): λ ∈ Λ}. Given δ > 0, choose λ0, λ
′
0 ∈ Λ such that

∣∣p2(γλ′
0
) − p2(γλ0)

∣∣2
> (diam E)2 − δ2,

and set h := λ′
0 − λ0. Then h ∈ Λ − Λ.

One can prove that M and F may be chosen such that p1(Γ ) ∩ (F + F − F − F ) = {0}. It follows that if λ ∈ Λh then

p2(γλ+h) − p2(γλ) = p2(γλ0+h) − p2(γλ0),

which in turn implies

p2(γλ) ∈ Ω ′ := p2(γλ0) + Bδ.

This shows that

Λh ⊂ M ′ + F , M ′ = M ′(
R

n ×R
m,Γ,Ω ′).

Now suppose that m � 1. Since D+(M ′) = (det Γ )−1|Ω ′|, it follows that D+(Λh) < ε if δ is sufficiently small, which is in
contradiction with (7). Hence m = 0, and M must be a lattice. �

2.7. Theorem 1 now follows. Indeed, (2) implies that Λ is a Delone set (see Lemma 1 in [2]). This together with (5)
gives (6) (Lemma 3). So Λ is a Meyer set (Lemma 4). Lemmas 1 and 2 imply (7). Now Lemma 5 finalizes the proof.

3. Proof of Theorem 2

Now we sketch the proof of Theorem 2.

Lemma 6. Given a number a > 0 there is R = R(n,a) such that, if a measure ν is supported by a u.d. set Q in R
n, d(Q ) > a, and if ν̂

vanishes on a ball B R , then ν = 0.

This lemma follows from Ingham type theorems used in the interpolation theory in R
n (see for example [14]).

Lemma 6 allows one to avoid using the one-dimensional Lemma 2 and gives that Λh is a Delone set with uniform
estimate: every ball of radius R (independent of h) intersects Λh . In turn, this implies (6) and (7). Now the proof of
Theorem 2 can be finished as above.

We skip the proof of Theorem 3.
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4. Remarks

It should be mentioned that if one requires S to be just a countable set, then the result fails. As an example, one may
take Meyer’s quasicrystals, namely the model set M defined by (8) (with m � 1). Then M is a u.d. set, which supports
a measure μ whose Fourier transform is a sum of point masses (see [10]), but M is not contained in a finite union of
translates of a lattice.

See also [3] where possible applications of general quasicrystals are discussed.

Note added in proof

At present we have proved Theorem 2 for positive measures μ in R
n , without the assumption that S − S is u.d. The

proof will be published elsewhere.
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