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RESUME

Dans cette courte Note, nous considérons une hypersurface compacte, connexe orientable
M de T'espace euclidien R™', de fonction support positive ou nulle et d'intégrande de
Minkowski o. Nous montrons que la fonction courbure moyenne « est la solution de
I'équation de Poisson A@ = o si et seulement si M est isométrique a une sphére S"(c)
de dimension n et courbure constante égale a c. Un résultat similaire est démontré pour
une hypersurface de courbure scalaire satisfaisant I'’équation de Poisson Agp =o0.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The importance of the Poisson equation in Physics is well known; it plays a fundamental role in Electrostatics, Fluid
motion, and many other areas. On a compact Riemannian manifold (M, g), it is known that the Poisson equation A = p
(A is the Laplacian operator, o is known function, ¢ is unknown) has a unique solution up to addition of a constant (cf. [1]).
It is obvious that the function p appearing in the Poisson equation should have an integral equal to 0. Given a compact
orientable immersed hypersurface M of the Euclidean space R™! with support function p = (, N) and mean curvature
function «, the Minkowski integrand o = 1+ p« has an integral equal to zero, where ¥ : M — R™*! is the immersion, N is
the unit normal and {(, ) is the Euclidean metric on R"*!. Therefore, it is natural to consider the Poisson equation A¢ = o on
the compact orientable hypersurface M of the Euclidean space R"*!. Characterizing spheres among compact hypersurfaces
is one of the fascinating areas in geometry and the use of partial differential equations in characterizing spheres has been
recorded in (cf. [2,3]). For the hypersphere S"(c) in the Euclidean space R™!, the support function is a positive constant,
the Minkowski integrand o = 0 and the mean curvature «, being a constant, satisfies the Poisson equation A¢ = o. This
raises a question: is a compact connected orientable hypersurface of the Euclidean space R™*!, with non-negative support
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function and the mean curvature function « satisfying the Poisson equation A¢ = o, necessarily isometric to a sphere
S™(c)? In this paper, we answer this question and prove the following:

Theorem 1. Let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space
R™1. The mean curvature function o of the hypersurface M is the solution of the Poisson equation Ag = o (o is the Minkowski
integrand) if and only if M is isometric to the n-sphere S™(c) of constant curvature c.

Moreover, we also consider the compact and connected orientable hypersurface with certain Ricci curvatures non-
negative in the Euclidean space whose scalar curvature is bounded above by the constant n(n — 1)A~!, where A = sup p?
and show that the scalar curvature of this hypersurface satisfies the Poisson equation A¢ = o if and only if it is isometric
to a sphere S"(c). Thus, we get another characterization of a sphere in the Euclidean space given by the following:

Theorem 2. Let M be an orientable compact and connected hypersurface of the Euclidean space R™t1 with scalar curvature S bounded
above by a constant n(n — 1)1 =", where A = sup p2, p being the support function. Then the Ricci curvature in the direction of the vector
field VS is non-negative and the scalar curvature S is the solution of the Poisson equation A = o (o is the Minkowski integrand) if
and only if M is isometric to the n-sphere S"(c) of constant curvature c = A~ 1.

2. Preliminaries

Let M be an immersed orientable hypersurface of the Euclidean space R"*! with unit normal vector field N and shape
operator A. If ¥ : M — R**! is the immersion, we denote the induced metric on M by g and by (, ) the Euclidean metric
on R"1, then we have:

¥ =y" 4 pN, (21)

where p = (¥, N) is the support function of the hypersurface M and T € X(M) the Lie algebra of smooth vector fields
on M. Taking covariant derivative in Eq. (2.1) with respect to X € X(M) and using Gauss and Weingarten formulas for a
hypersurface, we get:

Vxy!' =X+ pAX, Vp=-A(y"), XeXM), (2.2)

where Vp is the gradient of the support function p. If the hypersurface M is compact, the Minkowski formula for the
hypersurface is:

f(1 + pa) =0, (2.3)
M

where o =n~!TrA is the mean curvature of the hypersurface. The shape operator A of the hypersurface satisfies the
Codazzi equation:

(VAY(X,Y)=(VA)(Y,X), X,YeXM),

where the covariant derivative (VA)(X,Y) = VxAY — A(VxY). Using local orthonormal frame {e, ..., e,} on the hypersur-
face and the above equation, we see that the gradient Vo of the mean curvature is given by:
nVa =Y (VA)(ei. e). (2.4)

The scalar curvature S of the hypersurface is given by:

s =n%a? — | Al (2.5)

The Minkowski integrand o0 =1+ p« in Eq. (2.3) gives rise to the Poisson equation:

Ap=0 (2.6)

on the hypersurface M. The following result is known for the Poisson equation on a compact Riemannian manifold (M, g).

Theorem 2.1. (See [1].) On a closed Riemannian manifold (M, g), if o is a smooth function of integral O, then there is a smooth solution
of the equation A@ = o, unique up to the addition of a constant.

If ¢ is a solution of the Poisson equation (2.6), then using:
1
divo V) =g(Vo, Vo) +0? and —Ag®=go +| Vel

we get the following.
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Lemma 2.2. Let M be a compact orientable hypersurface of the Euclidean space R™! with Minkowski's integrand o . Then the solution
@ of the Poisson equation A@ = o satisfies:

/(g(VU,Vgo)+02) =0 and f((pa +IVel?) = 0.
M M

3. Proof of Theorem 1

Suppose the mean curvature « is the solution of the Poisson equation A¢ = o on the hypersurface M. Define a smooth
function f on M by:

_ 1.2
f—£||¢|| . (3.1)

Then the gradient of this function is given by Vf =n~1yT, which together with Eq. (2.2) gives A f = (1 + pa) =0, that
is, f is a solution of the Poisson equation A¢ = o. Hence by Theorem 2.1, we have o = f + ¢, for a constant ¢ and
consequently, we get:

nva=y'. (3.2)
We denote by A, the Hessian operator of the mean curvature function «. Then Egs. (2.2) and (3.2) give:

nAy =14 pA,
and consequently, we have:

nTr(AAg) = no + p||All%. (3.3)
We use Eq. (2.4) to compute the divergence of the vector field A(Va):

div(A(Va)) = Tr(AAg) +n|| Va2,
Integrating the above equation and using Eq. (3.3), we get:

/(na +plAI? +n?|Va|?) =0,

M

which together with Lemma 2.2 and 0 =1+ p« gives:

/(,O(IIAII2 — naz) +n(n — 1)||Voz||2) =0.
M

Since the support function p is non-negative and ||A||2 > na?2, the above equation gives:
p(IAI> —na?) =0 and Va=0.

Note that p =0 gives a contradiction of the Minkowski formula (2.3). Thus we have ||A|2 — na? =0 and « is a constant.
However, we know that ||A||> > no? and the equality holds if and only if A = «I. Hence, M is totally umbilical hypersurface,
which, being compact and connected, is isometric to the n-sphere $"(c) of constant curvature ¢ = 2. The converse is trivial.

4. Proof of Theorem 2

Suppose M be a compact and connected orientable hypersurface of the Euclidean space R™! satisfying the hypothesis
of the theorem. Then the scalar curvature S satisfies the Poisson equation Agp = o and, as we have seen that the function
f defined in Eq. (3.1) satisfies the same Poisson equitation, by Theorem 2.1 we have S = f 4 c for a constant c, which gives:

nS=vf=y'. (41)

If As denotes the Hessian operator of the scalar curvature function S, the above equation together with Eq. (2.2) implies
that:

nAs =1+ pA. (4.2)

The above equation and the Minkowski formula (2.3) give:
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1
/||A5||2=n—2/(/)2||f\||2—n)- (4.3)
M M

Also, we have (AS)? =02 =1+ 2pa + p?a?, which on integration gives:

/(AS)2 = /(,02052 -1), (4.4)
M M

where we have used Eq. (2.3). Now, using Egs. (2.5), (4.3) and (4.4) in the Bochner formula:

[(Ric(VS, VS) + || As|*> — (AS)?) =0,
M
we get:

f(Ric(VS, vS) + n]—z(n(n -1- pZS)) =0. (4.5)
M

Note that the constant A = sup p? > 0, for if A =0, we shall get p? =0 and it will give a contradiction of the Minkowski
formula. The bound S <n(n—1)A~"! on the scalar curvature gives, p2S <n(n—1)p?A~1 <n(n—1). Since the Ricci curvature
in the direction of the vector field VS is non-negative, Eq. (4.5) gives:

Ric(VS,VS)=0 and p?S=nn-1), (4.6)

and the inequality p?S < n(n —1)p?A~! <n(n — 1) gives p> =171, that is p is a constant. Hence, the second equation

in (4.6) gives that the scalar curvature S is a constant. Now, using this in Eq. (4.2), we get A= p~'I = A~21, which proves
that M is isometric to S"(c) of constant curvature ¢ = A~ 1. The converse is trivial.
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