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In this short Note, we consider a compact and connected orientable hypersurface M of the
Euclidean space Rn+1 with non-negative support function and Minkowski’s integrand σ ,
and show that the mean curvature function α is the solution of the Poisson equation
�ϕ = σ if and only if M is isometric to n-sphere Sn(c) of constant curvature c. A similar
result is proved for a hypersurface with scalar curvature satisfying the Poisson equation
�ϕ = σ .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette courte Note, nous considérons une hypersurface compacte, connexe orientable
M de l’espace euclidien Rn+1, de fonction support positive ou nulle et d’intégrande de
Minkowski σ . Nous montrons que la fonction courbure moyenne α est la solution de
l’équation de Poisson �ϕ = σ si et seulement si M est isométrique à une sphère Sn(c)
de dimension n et courbure constante égale à c. Un résultat similaire est démontré pour
une hypersurface de courbure scalaire satisfaisant l’équation de Poisson �ϕ = σ .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The importance of the Poisson equation in Physics is well known; it plays a fundamental role in Electrostatics, Fluid
motion, and many other areas. On a compact Riemannian manifold (M, g), it is known that the Poisson equation �ϕ = ρ
(� is the Laplacian operator, ρ is known function, ϕ is unknown) has a unique solution up to addition of a constant (cf. [1]).
It is obvious that the function ρ appearing in the Poisson equation should have an integral equal to 0. Given a compact
orientable immersed hypersurface M of the Euclidean space Rn+1 with support function ρ = 〈ψ, N〉 and mean curvature
function α, the Minkowski integrand σ = 1 +ρα has an integral equal to zero, where ψ : M → Rn+1 is the immersion, N is
the unit normal and 〈, 〉 is the Euclidean metric on Rn+1. Therefore, it is natural to consider the Poisson equation �ϕ = σ on
the compact orientable hypersurface M of the Euclidean space Rn+1. Characterizing spheres among compact hypersurfaces
is one of the fascinating areas in geometry and the use of partial differential equations in characterizing spheres has been
recorded in (cf. [2,3]). For the hypersphere Sn(c) in the Euclidean space Rn+1, the support function is a positive constant,
the Minkowski integrand σ = 0 and the mean curvature α, being a constant, satisfies the Poisson equation �ϕ = σ . This
raises a question: is a compact connected orientable hypersurface of the Euclidean space Rn+1, with non-negative support
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function and the mean curvature function α satisfying the Poisson equation �ϕ = σ , necessarily isometric to a sphere
Sn(c)? In this paper, we answer this question and prove the following:

Theorem 1. Let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space
Rn+1 . The mean curvature function α of the hypersurface M is the solution of the Poisson equation �ϕ = σ (σ is the Minkowski
integrand) if and only if M is isometric to the n-sphere Sn(c) of constant curvature c.

Moreover, we also consider the compact and connected orientable hypersurface with certain Ricci curvatures non-
negative in the Euclidean space whose scalar curvature is bounded above by the constant n(n − 1)λ−1, where λ = supρ2

and show that the scalar curvature of this hypersurface satisfies the Poisson equation �ϕ = σ if and only if it is isometric
to a sphere Sn(c). Thus, we get another characterization of a sphere in the Euclidean space given by the following:

Theorem 2. Let M be an orientable compact and connected hypersurface of the Euclidean space Rn+1 with scalar curvature S bounded
above by a constant n(n−1)λ−1 , where λ = supρ2 , ρ being the support function. Then the Ricci curvature in the direction of the vector
field ∇ S is non-negative and the scalar curvature S is the solution of the Poisson equation �ϕ = σ (σ is the Minkowski integrand) if
and only if M is isometric to the n-sphere Sn(c) of constant curvature c = λ−1 .

2. Preliminaries

Let M be an immersed orientable hypersurface of the Euclidean space Rn+1 with unit normal vector field N and shape
operator A. If ψ : M → Rn+1 is the immersion, we denote the induced metric on M by g and by 〈, 〉 the Euclidean metric
on Rn+1, then we have:

ψ = ψ T + ρN, (2.1)

where ρ = 〈ψ, N〉 is the support function of the hypersurface M and ψ T ∈ X(M) the Lie algebra of smooth vector fields
on M . Taking covariant derivative in Eq. (2.1) with respect to X ∈ X(M) and using Gauss and Weingarten formulas for a
hypersurface, we get:

∇Xψ T = X + ρ A X, ∇ρ = −A
(
ψ T )

, X ∈X(M), (2.2)

where ∇ρ is the gradient of the support function ρ . If the hypersurface M is compact, the Minkowski formula for the
hypersurface is:∫

M

(1 + ρα) = 0, (2.3)

where α = n−1 Tr A is the mean curvature of the hypersurface. The shape operator A of the hypersurface satisfies the
Codazzi equation:

(∇ A)(X, Y ) = (∇ A)(Y , X), X, Y ∈X(M),

where the covariant derivative (∇ A)(X, Y ) = ∇X AY − A(∇X Y ). Using local orthonormal frame {e1, . . . , en} on the hypersur-
face and the above equation, we see that the gradient ∇α of the mean curvature is given by:

n∇α =
∑

(∇ A)(ei, ei). (2.4)

The scalar curvature S of the hypersurface is given by:

S = n2α2 − ‖A‖2. (2.5)

The Minkowski integrand σ = 1 + ρα in Eq. (2.3) gives rise to the Poisson equation:

�ϕ = σ (2.6)

on the hypersurface M . The following result is known for the Poisson equation on a compact Riemannian manifold (M, g).

Theorem 2.1. (See [1].) On a closed Riemannian manifold (M, g), if σ is a smooth function of integral 0, then there is a smooth solution
of the equation �ϕ = σ , unique up to the addition of a constant.

If ϕ is a solution of the Poisson equation (2.6), then using:

div(σ∇ϕ) = g(∇σ ,∇ϕ) + σ 2 and
1

2
�ϕ2 = ϕσ + ‖∇ϕ‖2,

we get the following.
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Lemma 2.2. Let M be a compact orientable hypersurface of the Euclidean space Rn+1 with Minkowski’s integrand σ . Then the solution
ϕ of the Poisson equation �ϕ = σ satisfies:∫

M

(
g(∇σ ,∇ϕ) + σ 2) = 0 and

∫
M

(
ϕσ + ‖∇ϕ‖2) = 0.

3. Proof of Theorem 1

Suppose the mean curvature α is the solution of the Poisson equation �ϕ = σ on the hypersurface M . Define a smooth
function f on M by:

f = 1

2n
‖ψ‖2. (3.1)

Then the gradient of this function is given by ∇ f = n−1ψ T , which together with Eq. (2.2) gives � f = (1 + ρα) = σ , that
is, f is a solution of the Poisson equation �ϕ = σ . Hence by Theorem 2.1, we have α = f + c, for a constant c and
consequently, we get:

n∇α = ψ T . (3.2)

We denote by Aα the Hessian operator of the mean curvature function α. Then Eqs. (2.2) and (3.2) give:

nAα = I + ρ A,

and consequently, we have:

n Tr(A Aα) = nα + ρ‖A‖2. (3.3)

We use Eq. (2.4) to compute the divergence of the vector field A(∇α):

div
(

A(∇α)
) = Tr(A Aα) + n‖∇α‖2.

Integrating the above equation and using Eq. (3.3), we get:∫
M

(
nα + ρ‖A‖2 + n2‖∇α‖2) = 0,

which together with Lemma 2.2 and σ = 1 + ρα gives:∫
M

(
ρ
(‖A‖2 − nα2) + n(n − 1)‖∇α‖2) = 0.

Since the support function ρ is non-negative and ‖A‖2 � nα2, the above equation gives:

ρ
(‖A‖2 − nα2) = 0 and ∇α = 0.

Note that ρ = 0 gives a contradiction of the Minkowski formula (2.3). Thus we have ‖A‖2 − nα2 = 0 and α is a constant.
However, we know that ‖A‖2 � nα2 and the equality holds if and only if A = α I . Hence, M is totally umbilical hypersurface,
which, being compact and connected, is isometric to the n-sphere Sn(c) of constant curvature c = α2. The converse is trivial.

4. Proof of Theorem 2

Suppose M be a compact and connected orientable hypersurface of the Euclidean space Rn+1 satisfying the hypothesis
of the theorem. Then the scalar curvature S satisfies the Poisson equation �ϕ = σ and, as we have seen that the function
f defined in Eq. (3.1) satisfies the same Poisson equitation, by Theorem 2.1 we have S = f + c for a constant c, which gives:

n∇ S = ∇ f = ψ T . (4.1)

If A S denotes the Hessian operator of the scalar curvature function S , the above equation together with Eq. (2.2) implies
that:

nA S = I + ρ A. (4.2)

The above equation and the Minkowski formula (2.3) give:
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∫
M

‖A S‖2 = 1

n2

∫
M

(
ρ2‖A‖2 − n

)
. (4.3)

Also, we have (�S)2 = σ 2 = 1 + 2ρα + ρ2α2, which on integration gives:∫
M

(�S)2 =
∫
M

(
ρ2α2 − 1

)
, (4.4)

where we have used Eq. (2.3). Now, using Eqs. (2.5), (4.3) and (4.4) in the Bochner formula:∫
M

(
Ric(∇ S,∇ S) + ‖A S‖2 − (�S)2) = 0,

we get:∫
M

(
Ric(∇ S,∇ S) + 1

n2

(
n(n − 1) − ρ2 S

)) = 0. (4.5)

Note that the constant λ = supρ2 > 0, for if λ = 0, we shall get ρ2 = 0 and it will give a contradiction of the Minkowski
formula. The bound S � n(n −1)λ−1 on the scalar curvature gives, ρ2 S � n(n −1)ρ2λ−1 � n(n −1). Since the Ricci curvature
in the direction of the vector field ∇ S is non-negative, Eq. (4.5) gives:

Ric(∇ S,∇ S) = 0 and ρ2 S = n(n − 1), (4.6)

and the inequality ρ2 S � n(n − 1)ρ2λ−1 � n(n − 1) gives ρ2 = λ−1, that is ρ is a constant. Hence, the second equation

in (4.6) gives that the scalar curvature S is a constant. Now, using this in Eq. (4.2), we get A = ρ−1 I = λ− 1
2 I , which proves

that M is isometric to Sn(c) of constant curvature c = λ−1. The converse is trivial.

References

[1] S. Donaldson, Geometric analysis lecture notes, available online at http://www2.imperial.ac.uk/~skdona/.
[2] P. Li, Lecture Notes on Geometric Analysis, Global Analysis Research Center, Seoul National University, Korea, 1993.
[3] P. Li, Curvature and function theory on Riemannian manifolds, in: Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and

Singer, vol. VII, International Press, 2000, pp. 375–432.

http://www2.imperial.ac.uk/~skdona/
http://refhub.elsevier.com/S1631-073X(13)00210-0/bib32s1
http://refhub.elsevier.com/S1631-073X(13)00210-0/bib33s1
http://refhub.elsevier.com/S1631-073X(13)00210-0/bib33s1

	A Note on hypersurfaces of a Euclidean space
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	References


