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Given a map u : Ω ⊆R
n →R

N , the ∞-Laplacian is the system:

�∞u := (
Du ⊗ Du + |Du|2[Du]⊥ ⊗ I

) : D2u = 0 (1)

and arises as the “Euler–Lagrange PDE” of the supremal functional E∞(u,Ω) = ‖Du‖L∞(Ω).
(1) is the model PDE of the vector-valued Calculus of Variations in L∞ and first appeared in
the author’s recent work [10–14]. Solutions to (1) present a natural phase separation with
qualitatively different behaviour on each phase. Moreover, on the interfaces the coefficients
of (1) are discontinuous. Herein we construct new explicit smooth solutions for n = N = 2,
for which the interfaces have triple junctions and non-smooth corners. The high complexity
of these solutions provides further understanding of the PDE (1) and limits what might be
true in future regularity considerations of the interfaces.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On se donne une carte u : Ω ⊆R
n →R

N , le laplacien-∞ est le système :

�∞u := (
Du ⊗ Du + |Du|2[Du]⊥ ⊗ I

) : D2u = 0, (1)

qui se présente comme une EDP d’Euler–Lagrange de la fonctionnelle E∞(u,Ω) =
‖Du‖L∞(Ω) ; (1) est l’EDP modèle du calcul des variations à valeurs vectorielles dans L∞,
introduite pour la première fois dans les travaux de l’auteur [10–14]. Les solutions de (1)
mettent en évidence une séparation naturelle, avec des comportements qualitativement
différents pour chaque phase. De plus, sur les interfaces, les coefficients de (1) sont
discontinus. On construit ici des solutions régulières explicites dans le cas n = N = 2,
solutions pour lesquelles des jonctions ont des points triples et des coins non réguliers.
L’extrême complexité de ces solutions permet de mieux comprendre l’EDP (1) et ses
limites, qui pourraient être vraies pour d’autres cas envisageables de régularité des
interfaces.
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1. Introduction

Let u : Ω ⊆ R
n → R

N be a smooth map. In this note, we are interested in constructions of solutions to the ∞-Laplace
PDE system, which in index form reads:

Diuα D juβ D2
i juβ + |Du|2[Du]⊥αβ D2

iiuβ = 0. (1.1)

Here Diuα is the i-partial derivative of the α-component of u, [Du(x)]⊥ is the orthogonal projection on the nullspace
of Du(x)� , which is the transpose of the gradient matrix Du(x) : Rn → R

N and | · | is the Euclidean norm on R
N×n , i.e.

|Du| = (Diuα Diuα)
1
2 . The summation convention is tacitly employed for indices 1 � i, j � n and 1 � α,β � N . In compact

vector notation, we write (1.1) as:

�∞u := (
Du ⊗ Du + |Du|2[Du]⊥ ⊗ I

) : D2u = 0. (1.2)

(1.2) arises as the “Euler–Lagrange PDE system” in the vector-valued Calculus of Variations in the space L∞ for the model
supremal functional:

E∞(u,Ω) := ‖Du‖L∞(Ω) (1.3)

which we interpret as ess supΩ |Du|. (1.2) has first been derived by the author in [10] and has been subsequently studied
together with (1.3) in [13,14]. (1.2) is a quasilinear degenerate elliptic system in non-divergence form (with discontinuous
coefficients), which can be derived in the limit of the p-Laplace system �pu = Div(|Du|p−2 Du) = 0 as p → ∞. The special
case of the scalar ∞-Laplacian reads �∞u = DiuD juD2

i ju = 0 and has a long history. In this case, the coefficient |Du|2[Du]⊥
of (1.2) vanishes identically. The scalar �∞ was first derived in the limit of the �p as p → ∞ and studied in the 1960s by
Aronsson [1,2]. It has been extensively studied ever since (see, e.g., [7] and references therein).

The motivation to study L∞ variational problems stems from their frequent appearance in applications (see, e.g., [5])
because minimising maximum values furnishes more realistic models when compared to minimisation of averages with
integral functionals. The associated PDE systems are also very challenging, since they are nonlinear, in non-divergence form,
and with discontinuous coefficients and cannot be studied by classical techniques. Moreover, certain geometric problems
are inherently connected to L∞ . In the vector case N � 2, our motivation comes from the problem of optimisation of
quasiconformal deformations of Geometric Analysis (see [6] and [11]). For N = 1, the motivation is the optimisation of
Lipschitz extensions (see [1,7] and also [15] for a recent vector-valued extension).

A basic difficulty arising already in the scalar case is that DiuD juD2
i ju = 0 is degenerate elliptic and in non-divergence

form and generally does not have distributional, weak, strong or classical solutions. In [3,4], Aronsson demonstrated “singular
solutions” (see also [9]), which later were rigorously interpreted as viscosity solutions [8]. In the vector case of N � 2,
“singular solutions” of (1.2) still appear (see [10]). A further difficulty associated with (1.2), which is a genuinely vectorial
phenomenon and does not appear when N = 1, is that [Du]⊥ may be discontinuous even for C∞ solutions. Such an example
on R

2 was given in [10] and is u(x, y) = eix − eiy . This map is ∞-harmonic in a neighbourhood of the origin, but the
projection [Du]⊥ is discontinuous on the diagonal.

In general, ∞-harmonic maps present a phase separation, which is better understood when n = 2. For every C2 map
u : Ω ⊆ R

2 → R
N solving �∞u = 0, there is a partition of Ω to the sets Ω2, Ω1, S of (2.1) below and u has 2- and

1-dimensional behaviour on Ω2 and Ω1, respectively (for details, see [13]). Also, [Du]⊥ is discontinuous on S . However,
no information was provided on the possible structure of these interfaces. For the example eix − eiy , the interface S is a
straight line.

Herein, following [10], we construct explicit examples of smooth solutions to (1.2) on the plane, whose interfaces have
surprisingly complicated structure, presenting multiple junctions and corners. In particular, these examples show that there
can be no regularity theory of interfaces, and the study of the system (1.2) itself is complicated even for smooth solutions.
Moreover, these examples relate to questions posed in [15] for the interfaces of solutions to a different “∞-Laplacian”
which arises when using the non-smooth operator norm on R

N×n instead of the Euclidean norm. The more complicated
∞-Laplacian of [15] relates to vector-valued Lipschitz extensions rather than to the Calculus of Variations in L∞ .

2. Constructions of 2-dimensional ∞-harmonic mappings

Let u :R2 → R
2 be a map in C1(R2)2. We set:

Ω2 := {
rk(Du) = 2

}
, Ω1 := int

{
rk(Du) � 1

}
, S := ∂Ω2, (2.1)

where “rk” denotes the rank and “int” the topological interior. We call Ω2 the 2-D phase of u, Ω1 the 1-D phase of u and S the
interface of u. Evidently, R2 = Ω2 ∪ Ω1 ∪ S . On Ω2 u is local diffeomorphism and on Ω1 “essentially scalar”.
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Fig. 1. Interfaces in the case of a triple junction. Fig. 2. Interfaces in the case of a triple junction with a corner point.

Fig. 3. Parametric function K leading to a triple junction. Fig. 4. Parametric function K leading to a triple junction with a corner point.

Proposition 2.1. Let u :R2 → R
2 be a map given by

u(x, y) :=
x∫

y

eiK (t) dt (2.2)

where eia = (cos a, sin a)� and K ∈ C1(R) with supR |K | < π
2 . Then,

(a) if K ≡ 0 on (−∞,0] and K ′ > 0 on (0,∞), then �∞u = 0, u is affine on Ω1 and Ω2 , Ω1 , S are as in Fig. 1, i.e.:

Ω1 = {x, y < 0}, S = ∂Ω1 ∪ {x = y � 0}, Ω2 = R
2 \ (Ω1 ∪ S); (2.3)

(b) if K ≡ 0 on [−1,+1] and K ′ > 0 on (−∞,−1) ∪ (1,∞), then �∞u = 0, u is affine on Ω1 and Ω2 , Ω1 , S are as in Fig. 2, i.e.:

Ω1 = {−1 < x, y < 1}, S = ∂Ω1 ∪ {x = y, |y| � 1}, Ω2 = R
2 \ (Ω1 ∪ S). (2.4)

Example 2.2. For (a), an explicit K is K (t) = 1 − (t2 + 1)−1 for t > 0 and K (t) = 0 for t � 0. For (b), an explicit K is
K (t) = 1 − ((t − 1)2 + 1)−1 for t > 1, K (t) = 0 for t ∈ [−1,1] and K (t) = ((t + 1)2 + 1)−1 − 1 for t < −1 (Figs. 3, 4).

Proof of Proposition 2.1. We begin with a little greater generality, in order to obtain formulas needed later in Proposi-
tion 2.3. Fix two planar curves f , g ∈ C2(R)2 that satisfy | f ′|2 = |g′|2 ≡ 1 and set v(x, y) := f (x) + g(y). Then, we have
D v(x, y) = ( f ′(x), g′(y)) ∈ R

2×2 and also D2
xx v(x, y) = f ′′(x), D2

yy v(x, y) = g′′(y), D2
xy v = D2

yx v = 0. Since | f ′| = |g′| ≡ 1,
the rank of Dv is determined by the angle of f ′ , g′ . Hence, rk(Dv(x, y)) = 2 if and only if f ′(x) is not colinear to g′(y) and
rk(Dv(x, y)) = 1 otherwise. We recall from [10] that a direct calculation gives:

�∞v(x, y) = 2
[(

f ′(x), g′(y)
)]⊥(

f ′′(x) + g′′(y)
)
. (2.5)

We observe that [( f ′(x), g′(y))]⊥ = I − f ′(x) ⊗ f ′(x) when f ′(x) = ±g′(y) and

[(
f ′(x), g′(y)

)]⊥ = 0 ⇔ rk
(

D v(x, y)
) = 2 ⇔ f ′(x) �= ±g′(y). (2.6)

We now choose f (t) := ∫ t
0 eiK (s) ds and g(t) := − f (t) for K ∈ C1(R) with supR |K | < π/2. Then, u of (2.2) can be written as

u(x, y) = f (x) − f (y) and also Du(x, y) = ( f ′(x),− f ′(y)) ∈ R
2×2. In view of (2.5), we deduce:

�∞u(x, y) = 2
[(

f ′(x),− f ′(y)
)]⊥(

f ′′(x) − f ′′(y)
)
. (2.7)

Since | f ′| ≡ 1, for the angle of the 2 partials Dxu = f ′ and D yu = − f ′ we have:

cos
(� (

f ′(x),− f ′(y)
)) = − f ′

α(x) f ′
α(y) = − cos

(
K (x) − K (y)

)
. (2.8)

Since supR |K | < π/2, we have |K (x) − K (y)| < π and as a result:

[(
f ′(x),− f ′(y)

)]⊥ = 0 ⇔ rk
(
Du(x, y)

) = 2 ⇔ K (x) �= K (y). (2.9)

(a) We now show that u is a solution on each quadrant separately.
On {x, y > 0}, we have K (x) �= K (y) if and only if x �= y, since K is strictly increasing on (0,∞). For x �= y, (2.9) and

(2.7) give �∞u(x, y) = 0. On the other hand, for x = y, (2.7) readily gives �∞u(x, x) = 0.



680 N. Katzourakis / C. R. Acad. Sci. Paris, Ser. I 351 (2013) 677–680
On {x, y � 0}, we have K (x) = K (y) = 0 since K ≡ 0 on (−∞,0]. Moreover, K ′ ≡ 0 on (−∞,0] because K ∈ C1(R). By
recalling that f ′(t) = eiK (t) , by (2.2) we have u(x, y) = ei0(x − y) = e1(x − y) and Du(x, y) = (e1,−e1) = e1 ⊗ (e1 − e2) and
also D2u ≡ 0. Hence, �∞u(x, y) = 0.

On {x � 0, y > 0}, we have K (x) = 0 and 0 < K (y) < π/2 because K ≡ 0 on (−∞,0] and 0 < K < π/2 on (0,∞). Hence,
K (x) �= K (y) and by (2.9), (2.7), we have �∞u(x, y) = 0.

On {y � 0, x > 0}, we have K (y) = 0 and 0 < K (x) < π/2 and hence K (x) �= K (y). By (2.9) and (2.7) we again deduce
�∞u(x, y) = 0.

We conclude (a) by observing that rk(Du) = 1 on {x = y}∪ {x, y � 0} and rk(Du) = 2 otherwise. Hence, (2.3) follows too.
(b) On {−1 � x, y � 1}, we have K (x) = K (y) = K ′(x) = K ′(y) = 0. Hence u(x, y) = e1(x − y), Du(x, y) = e1 ⊗ (e1 − e2)

and D2u ≡ 0. Thus, �∞u(x, y) = 0.
On {x, y > 1}, we have K (x) �= K (y) if and only if x �= y, since K is strictly increasing on (1,∞). By (2.7) we evidently

have �∞u(x, x) = 0 and for x �= y by (2.9) and (2.7) we again deduce �∞u(x, y) = 0.
On {y > 1,−1 � x � 1}, we have K (x) = 0 < K (y) < π/2 and by (2.9) and (2.7) we again have �∞u(x, y) = 0. By arguing

in the same way in the remaining subsets of R2, (b) follows together with (2.4). �
The following result shows that Proposition 2.1 covers all possible qualitative behaviours of 2-D ∞-harmonic maps in

separated variables:

Proposition 2.3. Let u : R2 → R
2 be a map of the form u(x, y) = f (x) + g(y) which satisfies �∞u = 0, where f , g are unit speed

curves in C2(R)2 . Then,

(a) if Ω1 �= ∅, then u is affine on (connected components of ) Ω1;
(b) if S is a C1 graph near a certain point, then near that point either u is affine on S or S is part of the diagonals {x = ±y} of R2 .

Proof. By (2.1), Ω2 is open and {rk(Du) � 1} is closed and equals Ω1 ∪ S = Ω1. Since �∞u = 0 and | f ′|2 = |g′|2 ≡ 1, by
(2.5), (2.6) we have:

Ω1 = {
(x, y) ∈R

2
∣∣ f ′(x) = ±g′(y), f ′′(x) + g′′(y)// f ′(x), g′(y)

}
. (2.10)

Hence, there is a λ : Ω1 → R such that f ′′(x) + g′′(y) = λ(x, y) f ′(x) and also f ′(x) = ±g′(y). Thus, we have λ(x, y) =
λ(x, y)| f ′(x)|2 = (λ(x, y) f ′

α(x)) f ′
α(x) = ( f ′′

α(x) + g′′
α(y)) f ′

α(x) = f ′′
α(x) f ′

α(x) + g′′
α(y)(±g′

α(y)) = 0. Hence, (2.10) becomes

Ω1 = {
(x, y) ∈R

2
∣∣ f ′(x) = ±g′(y), f ′′(x) = −g′′(y)

}
. (2.11)

(a) If Ω1 �= ∅, for any (x0, y0) ∈ Ω1, there is an r > 0 such that (x0 − r, x0 + r) × (y0 − r, y0 + r) ⊆ Ω1. Hence, for y = y0
and x ∈ (x0 − r, x0 + r), we have f ′(x) = ±g′(y0) and hence f ′′(x) = 0. Similarly, g′′ = 0 on (y0 − r, y0 + r) and hence u is
affine on connected components of Ω1.

(b) If {(x,a(x)): |x − x0| < r} ⊆ S for some r > 0 and a ∈ C1(x0 − r, x0 + r), we have f ′(x) = ±g′(a(x)) and by
differentiating we get f ′′(x) = ±g′′(a(x))a′(x). Recall that we also have f ′′(x) = −g′′(a(x)). By these two, we deduce
(a′(x) ± 1)g′′(a(x)) = 0. As a result, either a′ = ±1 near x0, or g′′ = 0 near a(x0). The conclusion follows. �
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