

Combinatorics

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

The indecomposable tournaments *T* with $|W_5(T)| = |T| - 2$

Les tournois indécomposables T tels que $|W_5(T)| = |T| - 2$

Houmem Belkhechine^a, Imed Boudabbous^b, Kaouthar Hzami^c

^a Carthage University, Bizerte Preparatory Engineering Institute, Tunisia

^b Sfax University, Sfax Preparatory Engineering Institute, Tunisia

^c Gabes University, Higher Institute of Computer Sciences and Multimedia of Gabes, Tunisia

ARTICLE INFO

Article history: Received 30 June 2013 Accepted 31 July 2013 Available online 19 August 2013

Presented by the Editorial Board

ABSTRACT

We consider a tournament T = (V, A). For $X \subseteq V$, the subtournament of T induced by X is $T[X] = (X, A \cap (X \times X))$. An interval of T is a subset X of V such that, for $a, b \in X$ and $x \in V \setminus X$, $(a, x) \in A$ if and only if $(b, x) \in A$. The trivial intervals of T are \emptyset , $\{x\}$ $(x \in V)$ and V. A tournament is indecomposable if all its intervals are trivial. For $n \ge 2$, W_{2n+1} denotes the unique indecomposable tournament defined on $\{0, \ldots, 2n\}$ such that $W_{2n+1}[\{0, \ldots, 2n - 1\}]$ is the usual total order. Given an indecomposable tournament T, $W_5(T)$ denotes the set of $v \in V$ such that there is $W \subseteq V$ satisfying $v \in W$ and T[W]is isomorphic to W_5 . Latka [6] characterized the indecomposable tournaments T such that $W_5(T) = \emptyset$. The authors [1] proved that if $W_5(T) \neq \emptyset$, then $|W_5(T)| \ge |V| - 2$. In this note, we characterize the indecomposable tournaments T such that $|W_5(T)| = |V| - 2$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Considérons un tournoi T = (V, A). Pour $X \subseteq V$, le sous-tournoi de T induit par X est $T[X] = (X, A \cap (X \times X))$. Un intervalle de T est une partie X de V telle que, pour tous $a, b \in X$ et $x \in V \setminus X$, $(a, x) \in A$ si et seulement si $(b, x) \in A$. Les intervalles triviaux de T sont \emptyset , $\{x\}$ ($x \in V$) et V. Un tournoi est indécomposable si tous ses intervalles sont triviaux. Pour $n \ge 2$, W_{2n+1} est l'unique tournoi indécomposable défini sur $\{0, \ldots, 2n\}$ tel que $W_{2n+1}[\{0, \ldots, 2n-1\}]$ est l'ordre total usuel. Étant donné un tournoi indécomposable T, $W_5(T)$ désigne l'ensemble des sommets $v \in V$ pour lesquels il existe une partie W de V telle que $v \in W$ et T[W] est isomorphe à W_5 . Latka [6] a caractérisé les tournois indécomposables T tels que $W_5(T) = \emptyset$. Les auteurs [1] ont prouvé que, si $W_5(T) \neq \emptyset$, alors $|W_5(T)| \ge |V| - 2$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A tournament T = (V(T), A(T)) (or (V, A)) consists of a finite set V of vertices together with a set A of ordered pairs of distinct vertices, called *arcs*, such that, for all $x \neq y \in V$, $(x, y) \in A$ if and only if $(y, x) \notin A$. The *cardinality* of T, denoted by |T|, is that of V(T). Given a tournament T = (V, A), with each subset X of V is associated the *subtournament* $T[X] = (X, A \cap (X \times X))$ of T induced by X. For $x \in V$, the subtournament $T[V \setminus \{x\}]$ is denoted by T - x. Two tournaments

E-mail addresses: houmem@gmail.com (H. Belkhechine), imed.boudabbous@gmail.com (I. Boudabbous), hzamikawthar@gmail.com (K. Hzami).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.07.021

T = (V, A) and T' = (V', A') are isomorphic, which is denoted by $T \simeq T'$, if there exists an isomorphism from T onto T', i.e., a bijection f from V onto V' such that for all $x, y \in V$, $(x, y) \in A$ if and only if $(f(x), f(y)) \in A'$. We say that a tournament T' embeds into a tournament T if T' is isomorphic to a subtournament of T. Otherwise, we say that T omits T'. A tournament is said to be *transitive* if it omits the tournament $C_3 = (\{0, 1, 2\}, \{(0, 1), (1, 2), (2, 0)\})$. For a finite subset V of \mathbb{N} , we denote by \vec{V} the usual *total order* defined on V, i.e., the transitive tournament $(V, \{(i, j): i < j\})$.

Let T = (V, A) be a tournament. For two vertices $x \neq y \in V$, the notation $x \to y$ signifies that $(x, y) \in A$. Similarly, given $x \in V$ and $Y \subseteq V$, the notation $x \to Y$ (resp. $Y \to x$) means that $x \to y$ (resp. $y \to x$) for all $y \in Y$. Given $x \in V$, we set $N_T^+(x) = \{y \in V: x \to y\}$. A subset *I* of *V* is an *interval* [4,5,8] of *T* provided that, for all $x \in V \setminus I$, $x \to I$ or $I \to x$. For example, \emptyset , $\{x\}$, where $x \in V$, and *V* are intervals of *T*, called *trivial* intervals. A tournament is *indecomposable* [5,8] if all its intervals are trivial; otherwise it is *decomposable*. Notice that a tournament T = (V, A) and its *dual* $T^* = (V, \{(x, y): (y, x) \in A\})$ share the same intervals. Hence, *T* is indecomposable if and only if T^* is. For all $n \in \mathbb{N} \setminus \{0\}$, the set $\{0, \ldots, n - 1\}$ is denoted by \mathbb{N}_n .

For $n \ge 2$, we introduce the tournament W_{2n+1} defined on \mathbb{N}_{2n+1} as follows: $W_{2n+1}[\mathbb{N}_{2n}] = \overrightarrow{\mathbb{N}_{2n}}$ and $N^+_{W_{2n+1}}(2n) = \{2i: i \in \mathbb{N}_n\}$. In 2003, B.J. Latka [6] characterized the indecomposable tournaments omitting the tournament W_5 . In order to present this characterization, we introduce the tournaments T_{2n+1} , U_{2n+1} defined on \mathbb{N}_{2n+1} , where $n \ge 2$, and the *Paley* tournament P_7 defined on \mathbb{N}_7 as follows.

- $A(T_{2n+1}) = \{(i, j): j i \in \{1, \dots, n\} \text{ mod } 2n + 1\}.$
- $A(T_{2n+1}) \setminus A(U_{2n+1}) = A(T_{2n+1}[\{n+1,\ldots,2n\}]).$
- $A(P_7) = \{(i, j): j i \in \{1, 2, 4\} \mod 7\}.$

Notice that for all $x \neq y \in \mathbb{N}_7$, $P_7 - x \simeq P_7 - y$, and let $B_6 = P_7 - 6$.

Theorem 1.1. (See [6].) Up to isomorphism, the indecomposable tournaments on at least 5 vertices and omitting W_5 are the tournaments B_6 , P_7 , T_{2n+1} and U_{2n+1} , where $n \ge 2$.

In 2012, the authors were interested in the set $W_5(T)$ of the vertices *x* of an indecomposable tournament T = (V, A) for which there exists a subset *X* of *V* such that $x \in X$ and $T[X] \simeq W_5$. They obtained the following.

Theorem 1.2. (See [1].) Let *T* be an indecomposable tournament into which W_5 embeds. Then, $|W_5(T)| \ge |T| - 2$. If, in addition, |T| is even, then $|W_5(T)| \ge |T| - 1$.

In this note, we characterize the class \mathscr{T} of the indecomposable tournaments T on at least 3 vertices such that $|W_5(T)| = |T| - 2$. This answers [1, Problem 4.4].

2. Partially critical tournaments and the class ${\mathscr T}$

Our characterization of the tournaments of the class \mathscr{T} requires the notion of partial criticality. This notion is defined in terms of critical vertices. A vertex *x* of an indecomposable tournament *T* is *critical* [8] if T - x is decomposable. The set of non-critical vertices of an indecomposable tournament *T* was introduced in [7]. It is called the *support* of *T* and is denoted by $\sigma(T)$. Let *T* be an indecomposable tournament and let *X* be a subset of V(T) such that $|X| \ge 3$; we say that *T* is *partially critical according to* T[X] (or T[X]-critical) [3] if T[X] is indecomposable and if $\sigma(T) \subseteq X$.

The result below point out the partial criticality structure of the tournaments of the class \mathscr{T} .

Proposition 2.1. Let T = (V, A) be a tournament of the class \mathscr{T} . Then, we have $V \setminus W_5(T) = \sigma(T)$. Moreover, there exists $z \in W_5(T)$ such that $T[(V \setminus W_5(T)) \cup \{z\}] \simeq C_3$. In particular, T is $T[(V \setminus W_5(T)) \cup \{z\}]$ -critical.

Proposition 2.1 leads us to consider the characterization of partially critical tournaments as a basic tool in our construction of the tournaments of the class \mathscr{T} . Partially critical tournaments were characterized in [7]. In order to recall this characterization, we need some additional notations. Given a tournament T = (V, A), with each subset X of V, such that $|X| \ge 3$ and T[X] is indecomposable, are associated the following subsets of $V \setminus X$.

- $X^- = \{x \in V \setminus X : x \to X\}$ and $X^+ = \{x \in V \setminus X : X \to x\}$.
- For all $u \in X$, $X^-(u) = \{x \in V \setminus X: \{u, x\}$ is an interval of $T[X \cup \{x\}]$ and $x \to u\}$ and $X^+(u) = \{x \in V \setminus X: \{u, x\}$ is an interval of $T[X \cup \{x\}]$ and $u \to x\}$.
- $\operatorname{Ext}(X) = \{x \in V \setminus X: T[X \cup \{x\}] \text{ is indecomposable}\}.$

The family $\{\text{Ext}(X), X^-, X^+\} \cup \{X^-(u): u \in X\} \cup \{X^+(u): u \in X\}$ is denoted by q_X^T .

A graph G = (V(G), E(G)) (or (V, E)) consists of a finite set V of vertices together with a set E of unordered pairs of distinct vertices. Given a vertex x of a graph G = (V, E), we set $N_G(x) = \{y \in V, \{x, y\} \in E\}$. With each subset X of V is

associated the subgraph $G[X] = (X, E \cap {X \choose 2})$ of G induced by X. An isomorphism from a graph G = (V, E) onto a graph G' = (V', E') is a bijection f from V onto V' such that, for all $x, y \in V$, $\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E'$. A graph *G* is connected if for all $x \neq y \in V(G)$, there is a sequence $x_0 = x, \ldots, x_m = y$ of vertices of *G* such that for all $i \in \mathbb{N}_m$, $\{x_i, x_{i+1}\} \in E(G)$. For example, given $n \ge 1$, the graph $G_{2n} = (\mathbb{N}_{2n}, \{\{x, y\} \in \binom{\mathbb{N}_{2n}}{2}: |y - x| \ge n\})$ is connected. A *connected* component of a graph G is a maximal subset X of V(G) (with respect to inclusion) such that G[X] is connected. The set of the connected components of G is a partition of V(G), denoted by $\mathscr{C}(G)$. Let T = (V, A) be an indecomposable tournament. With each subset X of V such that $|X| \ge 3$ and T[X] is indecomposable, is associated its *outside* graph G_X^T defined by $V(G_X^T) = V \setminus X$ and $E(G_X^T) = \{\{x, y\} \in \binom{V \setminus X}{2}$: $T[X \cup \{x, y\}]$ is indecomposable}. We now present the characterization of the partially critical tournaments.

Theorem 2.2. (See [7].) Consider a tournament T = (V, A) with a subset X of V such that $|X| \ge 3$ and T[X] is indecomposable. The tournament T is T[X]-critical if and only if the assertions below hold.

- (i) $Ext(X) = \emptyset$.
- (ii) For all $u \in X$, the tournaments $T[X^{-}(u) \cup X^{+}(u) \cup \{u\}]$ and $T[X^{-} \cup X^{+} \cup \{u\}]$ are transitive.
- (iii) For each $Q \in \mathscr{C}(G_X^T)$, there is an isomorphism f from G_{2n} onto $G_X^T[Q]$ such that $Q_1, Q_2 \in q_X^T$, where $Q_1 = f(\mathbb{N}_n)$ and $Q_2 = f(\mathbb{N}_{2n} \setminus \mathbb{N}_n)$. Moreover, for all $x \in Q_i$ (i = 1 or 2), $|N_{G_X^T}(x)| = |N_{T[Q_i]}^+(x)| + 1$ (resp. $n |N_{T[Q_i]}^+(x)|$) if $Q_i = X^+$ or $X^{-}(u)$ (resp. $Q_i = X^{-}$ or $X^{+}(u)$), where $u \in X$.

The next corollary follows from Theorem 2.2.

Corollary 2.3. Let T be a T[X]-critical tournament, T is entirely determined up to isomorphism by giving T[X], q_X^T and $\mathscr{C}(G_X^T)$. Moreover, the tournament T is exactly determined by giving, in addition, either the graphs $G_X^T[Q]$ for any $Q \in \mathscr{C}(G_X^T)$, or the transitive tournaments T[Y] for any $Y \in q_X^T$.

We underline the importance of Theorem 2.2 and Corollary 2.3 in our description of the tournaments of the class \mathscr{T} . Indeed, these tournaments are introduced up to isomorphism as C_3 -critical tournaments T defined by giving $\mathscr{C}(G_{\mathbb{N}_2}^T)$ in terms of the nonempty elements of $q_{N_2}^T$. Fig. 1 illustrates a tournament obtained from such information. We refer to [7, Discussion] for more details about this purpose.

We now introduce the class \mathcal{H} (resp. \mathcal{I} , \mathcal{J} , \mathcal{K} , \mathcal{L}) of the C₃-critical tournaments H (resp. I, J, K, L) such that:

- $\mathscr{C}(G_{\mathbb{N}_2}^H) = \{\mathbb{N}_3^+(0) \cup \mathbb{N}_3^-, \mathbb{N}_3^+ \cup \mathbb{N}_3^-(1)\} \text{ (see Fig. 1);}$
- $\mathscr{C}(G_{\mathbb{N}_3}^I) = \{ \mathbb{N}_3^+(0) \cup \mathbb{N}_3^+(2), \mathbb{N}_3^+(1) \cup \mathbb{N}_3^-(0) \};\$

- $\begin{aligned} &- \mathscr{C}(G_{\mathbb{N}_3}^{I}) = \{\mathbb{N}_3^+(1) \cup \mathbb{N}_3^-, \mathbb{N}_3^-(1) \cup \mathbb{N}_3^-(0)\}; \\ &- \mathscr{C}(G_{\mathbb{N}_3}^{K}) = \{\mathbb{N}_3^+(1) \cup \mathbb{N}_3^-, \mathbb{N}_3^+(0) \cup \mathbb{N}_3^-(2)\}; \\ &- \mathscr{C}(G_{\mathbb{N}_3}^{I}) = \{\mathbb{N}_3^+(1) \cup \mathbb{N}_3^-, \mathbb{N}_3^+(0) \cup \mathbb{N}_3^-(2), \mathbb{N}_3^+ \cup \mathbb{N}_3^-(0)\}. \end{aligned}$

Notice that for $\mathscr{X} = \mathscr{H}$, \mathscr{I} , \mathscr{I} or \mathscr{H} , $\{|V(T)|: T \in \mathscr{X}\} = \{2n + 1: n \ge 3\}$ and $\{|V(T)|: T \in \mathscr{L}\} = \{2n + 1: n \ge 4\}$. We denote by \mathscr{H}^* (resp. \mathscr{I}^* , \mathscr{J}^* , \mathscr{K}^* , \mathscr{L}^*) the class of the tournaments T^* , where $T \in \mathscr{H}$ (resp. \mathscr{I} , \mathscr{J} , \mathscr{K} , \mathscr{L}).

Remark 1. We have $\mathscr{H}^* = \mathscr{H}$ and $\mathscr{I}^* = \mathscr{I}$.

By setting $\mathscr{M} = \mathscr{H} \cup \mathscr{I} \cup \mathscr{J} \cup \mathscr{J}^* \cup \mathscr{K} \cup \mathscr{K}^* \cup \mathscr{L} \cup \mathscr{L}^*$, we state our main result as follows.

Theorem 2.4. Up to isomorphism, the tournaments of the class \mathscr{T} are those of the class \mathscr{M} . Moreover, for all $T \in \mathscr{M}$, we have $V(T) \setminus W_5(T) = \sigma(T) = \{0, 1\}.$

3. The sketch of the proof of Theorem 2.4

The complete proof of Theorem 2.4 can be found in [2], we give here the main ideas. Proposition 2.1 leads us to partition the tournaments *T* of the class \mathscr{T} according to the different values of an invariant c(T) defined as follows. For $T \in \mathscr{T}$, c(T)is the minimum of $|\mathscr{C}(G_{\sigma(T)\cup\{x\}}^T)|$, the minimum being taken over all the vertices x of $W_5(T)$ such that $T[\sigma(T)\cup\{x\}]\simeq C_3$. Notice that $c(T) = c(T^*)$. As *T* is $T[\sigma(T) \cup \{x\}]$ -critical by Proposition 2.1, then $c(T) \leq 4$. Moreover, $c(T) \geq 2$ by the following lemma.

Lemma 3.1. Given a C_3 -critical tournament T on at least 5 vertices, if $G_{\mathbb{N}_3}^T$ is connected, then $\sigma(T) = \emptyset$.

Fig. 1. A tournament *T* of the class \mathcal{H} .

Theorem 2.4 results from the following propositions.

Proposition 3.2. For all tournament *T* of the class \mathcal{M} , we have $V(T) \setminus W_5(T) = \sigma(T) = \{0, 1\}$.

Proposition 3.3. Up to isomorphism, the tournaments T of the class \mathscr{T} such that c(T) = 2 are those of the class $\mathscr{M} \setminus (\mathscr{L} \cup \mathscr{L}^*)$.

Proposition 3.4. Up to isomorphism, the tournaments T of the class \mathscr{T} such that c(T) = 3 are those of the class $\mathscr{L} \cup \mathscr{L}^*$.

Proposition 3.5. For any tournament *T* of the class \mathscr{T} , we have c(T) = 2 or 3.

References

- [1] H. Belkhechine, I. Boudabbous, K. Hzami, Sous-tournois isomorphes à W₅ dans un tournoi indécomposable, C. R. Acad. Sci. Paris, Ser. I 350 (2012) 333–337.
- [2] H. Belkhechine, I. Boudabbous, K. Hzami, The indecomposable tournaments T with $|W_5(T)| = |T| 2$, http://arxiv.org/abs/1307.5027, 2013.
- [3] A. Breiner, J. Deogun, P. Ille, Partially critical indecomposable graphs, Contrib. Discrete Math. 3 (2008) 40–59.
- [4] R. Fraïssé, L'intervalle en théorie des relations, ses généralisations, filtre intervallaire et clôture d'une relation, in: M. Pouzet, D. Richard (Eds.), Orders, Description and Roles, North-Holland, Amsterdam, 1984, pp. 313–342.
- [5] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71-78.
- [6] B.J. Latka, Structure theorem for tournaments omitting *N*₅, J. Graph Theory 42 (2003) 165–192.
- [7] M.Y. Sayar, Partially critical indecomposable tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011) 52–76.
- [8] J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191–205.