Combinatorics

The indecomposable tournaments T with $\left|W_{5}(T)\right|=|T|-2$

Les tournois indécomposables T tels que $\left|W_{5}(T)\right|=|T|-2$

Houmem Belkhechine ${ }^{\text {a }}$, Imed Boudabbous ${ }^{\text {b }}$, Kaouthar Hzami ${ }^{\text {c }}$
${ }^{\text {a }}$ Carthage University, Bizerte Preparatory Engineering Institute, Tunisia
${ }^{\text {b }}$ Sfax University, Sfax Preparatory Engineering Institute, Tunisia
${ }^{\text {c }}$ Gabes University, Higher Institute of Computer Sciences and Multimedia of Gabes, Tunisia

A R T I CLE IN F O

Article history:

Received 30 June 2013
Accepted 31 July 2013
Available online 19 August 2013
Presented by the Editorial Board

Abstract

We consider a tournament $T=(V, A)$. For $X \subseteq V$, the subtournament of T induced by X is $T[X]=(X, A \cap(X \times X))$. An interval of T is a subset X of V such that, for $a, b \in X$ and $x \in V \backslash X,(a, x) \in A$ if and only if $(b, x) \in A$. The trivial intervals of T are \emptyset, $\{x\}(x \in V)$ and V. A tournament is indecomposable if all its intervals are trivial. For $n \geqslant 2$, $W_{2 n+1}$ denotes the unique indecomposable tournament defined on $\{0, \ldots, 2 n\}$ such that $W_{2 n+1}[\{0, \ldots, 2 n-1\}]$ is the usual total order. Given an indecomposable tournament T, $W_{5}(T)$ denotes the set of $v \in V$ such that there is $W \subseteq V$ satisfying $v \in W$ and $T[W]$ is isomorphic to W_{5}. Latka [6] characterized the indecomposable tournaments T such that $W_{5}(T)=\emptyset$. The authors [1] proved that if $W_{5}(T) \neq \emptyset$, then $\left|W_{5}(T)\right| \geqslant|V|-2$. In this note, we characterize the indecomposable tournaments T such that $\left|W_{5}(T)\right|=|V|-2$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Considérons un tournoi $T=(V, A)$. Pour $X \subseteq V$, le sous-tournoi de T induit par X est $T[X]=(X, A \cap(X \times X))$. Un intervalle de T est une partie X de V telle que, pour tous $a, b \in X$ et $x \in V \backslash X,(a, x) \in A$ si et seulement si $(b, x) \in A$. Les intervalles triviaux de T sont $\emptyset,\{x\}(x \in V)$ et V. Un tournoi est indécomposable si tous ses intervalles sont triviaux. Pour $n \geqslant 2, W_{2 n+1}$ est l'unique tournoi indécomposable défini sur $\{0, \ldots, 2 n\}$ tel que $W_{2 n+1}[\{0, \ldots, 2 n-1\}]$ est l'ordre total usuel. Étant donné un tournoi indécomposable $T, W_{5}(T)$ désigne l'ensemble des sommets $v \in V$ pour lesquels il existe une partie W de V telle que $v \in W$ et $T\left[W\right.$] est isomorphe à W_{5}. Latka [6] a caractérisé les tournois indécomposables T tels que $W_{5}(T)=\emptyset$. Les auteurs [1] ont prouvé que, si $W_{5}(T) \neq \emptyset$, alors $\left|W_{5}(T)\right| \geqslant|V|-2$. Dans cette note, nous caractérisons les tournois indécomposables T tels que $\left|W_{5}(T)\right|=|V|-2$.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A tournament $T=(V(T), A(T))$ (or $(V, A))$ consists of a finite set V of vertices together with a set A of ordered pairs of distinct vertices, called arcs, such that, for all $x \neq y \in V,(x, y) \in A$ if and only if $(y, x) \notin A$. The cardinality of T, denoted by $|T|$, is that of $V(T)$. Given a tournament $T=(V, A)$, with each subset X of V is associated the subtournament $T[X]=$ $(X, A \cap(X \times X)$) of T induced by X. For $x \in V$, the subtournament $T[V \backslash\{x\}]$ is denoted by $T-x$. Two tournaments

[^0]$T=(V, A)$ and $T^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ are isomorphic, which is denoted by $T \simeq T^{\prime}$, if there exists an isomorphism from T onto T^{\prime}, i.e., a bijection f from V onto V^{\prime} such that for all $x, y \in V,(x, y) \in A$ if and only if $(f(x), f(y)) \in A^{\prime}$. We say that a tournament T^{\prime} embeds into a tournament T if T^{\prime} is isomorphic to a subtournament of T. Otherwise, we say that T omits T^{\prime}. A tournament is said to be transitive if it omits the tournament $C_{3}=(\{0,1,2\},\{(0,1),(1,2),(2,0)\})$. For a finite subset V of \mathbb{N}, we denote by \vec{V} the usual total order defined on V, i.e., the transitive tournament $(V,\{(i, j): i<j\})$.

Let $T=(V, A)$ be a tournament. For two vertices $x \neq y \in V$, the notation $x \rightarrow y$ signifies that $(x, y) \in A$. Similarly, given $x \in V$ and $Y \subseteq V$, the notation $x \rightarrow Y$ (resp. $Y \rightarrow x$) means that $x \rightarrow y$ (resp. $y \rightarrow x$) for all $y \in Y$. Given $x \in V$, we set $N_{T}^{+}(x)=\{y \in V: x \rightarrow y\}$. A subset I of V is an interval $[4,5,8]$ of T provided that, for all $x \in V \backslash I, x \rightarrow I$ or $I \rightarrow x$. For example, $\emptyset,\{x\}$, where $x \in V$, and V are intervals of T, called trivial intervals. A tournament is indecomposable [5,8] if all its intervals are trivial; otherwise it is decomposable. Notice that a tournament $T=(V, A)$ and its dual $T^{\star}=(V,\{(x, y):(y, x) \in$ $A\}$) share the same intervals. Hence, T is indecomposable if and only if T^{\star} is. For all $n \in \mathbb{N} \backslash\{0\}$, the set $\{0, \ldots, n-1\}$ is denoted by \mathbb{N}_{n}.

For $n \geqslant 2$, we introduce the tournament $W_{2 n+1}$ defined on $\mathbb{N}_{2 n+1}$ as follows: $W_{2 n+1}\left[\mathbb{N}_{2 n}\right]=\overrightarrow{\mathbb{N}_{2 n}}$ and $N_{W_{2 n+1}}^{+}(2 n)=$ $\left\{2 i: i \in \mathbb{N}_{n}\right\}$. In 2003, B.J. Latka [6] characterized the indecomposable tournaments omitting the tournament W_{5}. In order to present this characterization, we introduce the tournaments $T_{2 n+1}, U_{2 n+1}$ defined on $\mathbb{N}_{2 n+1}$, where $n \geqslant 2$, and the Paley tournament P_{7} defined on \mathbb{N}_{7} as follows.

$$
\begin{aligned}
& -A\left(T_{2 n+1}\right)=\{(i, j): j-i \in\{1, \ldots, n\} \bmod 2 n+1\} . \\
& -A\left(T_{2 n+1}\right) \backslash A\left(U_{2 n+1}\right)=A\left(T_{2 n+1}[\{n+1, \ldots, 2 n\}]\right) . \\
& -A\left(P_{7}\right)=\{(i, j): j-i \in\{1,2,4\} \bmod 7\} .
\end{aligned}
$$

Notice that for all $x \neq y \in \mathbb{N}_{7}, P_{7}-x \simeq P_{7}-y$, and let $B_{6}=P_{7}-6$.
Theorem 1.1. (See [6].) Up to isomorphism, the indecomposable tournaments on at least 5 vertices and omitting W_{5} are the tournaments $B_{6}, P_{7}, T_{2 n+1}$ and $U_{2 n+1}$, where $n \geqslant 2$.

In 2012, the authors were interested in the set $W_{5}(T)$ of the vertices x of an indecomposable tournament $T=(V, A)$ for which there exists a subset X of V such that $x \in X$ and $T[X] \simeq W_{5}$. They obtained the following.

Theorem 1.2. (See [1].) Let T be an indecomposable tournament into which W_{5} embeds. Then, $\left|W_{5}(T)\right| \geqslant|T|-2$. If, in addition, $|T|$ is even, then $\left|W_{5}(T)\right| \geqslant|T|-1$.

In this note, we characterize the class \mathscr{T} of the indecomposable tournaments T on at least 3 vertices such that $\left|W_{5}(T)\right|=|T|-2$. This answers [1, Problem 4.4].

2. Partially critical tournaments and the class \mathscr{T}

Our characterization of the tournaments of the class \mathscr{T} requires the notion of partial criticality. This notion is defined in terms of critical vertices. A vertex x of an indecomposable tournament T is critical [8] if $T-x$ is decomposable. The set of non-critical vertices of an indecomposable tournament T was introduced in [7]. It is called the support of T and is denoted by $\sigma(T)$. Let T be an indecomposable tournament and let X be a subset of $V(T)$ such that $|X| \geqslant 3$; we say that T is partially critical according to $T[X]$ (or $T[X]$-critical) [3] if $T[X]$ is indecomposable and if $\sigma(T) \subseteq X$.

The result below point out the partial criticality structure of the tournaments of the class \mathscr{T}.
Proposition 2.1. Let $T=(V, A)$ be a tournament of the class \mathscr{T}. Then, we have $V \backslash W_{5}(T)=\sigma(T)$. Moreover, there exists $z \in W_{5}(T)$ such that $T\left[\left(V \backslash W_{5}(T)\right) \cup\{z\}\right] \simeq C_{3}$. In particular, T is $T\left[\left(V \backslash W_{5}(T)\right) \cup\{z\}\right]$-critical.

Proposition 2.1 leads us to consider the characterization of partially critical tournaments as a basic tool in our construction of the tournaments of the class \mathscr{T}. Partially critical tournaments were characterized in [7]. In order to recall this characterization, we need some additional notations. Given a tournament $T=(V, A)$, with each subset X of V, such that $|X| \geqslant 3$ and $T[X]$ is indecomposable, are associated the following subsets of $V \backslash X$.

- $X^{-}=\{x \in V \backslash X: x \rightarrow X\}$ and $X^{+}=\{x \in V \backslash X: X \rightarrow x\}$.
- For all $u \in X, X^{-}(u)=\{x \in V \backslash X:\{u, x\}$ is an interval of $T[X \cup\{x\}]$ and $x \rightarrow u\}$ and $X^{+}(u)=\{x \in V \backslash X:\{u, x\}$ is an interval of $T[X \cup\{x\}]$ and $u \rightarrow x\}$.
- $\operatorname{Ext}(X)=\{x \in V \backslash X: T[X \cup\{x\}]$ is indecomposable $\}$.

The family $\left\{\operatorname{Ext}(X), X^{-}, X^{+}\right\} \cup\left\{X^{-}(u): u \in X\right\} \cup\left\{X^{+}(u): u \in X\right\}$ is denoted by q_{X}^{T}.
A graph $G=(V(G), E(G))$ (or (V, E)) consists of a finite set V of vertices together with a set E of unordered pairs of distinct vertices. Given a vertex x of a graph $G=(V, E)$, we set $N_{G}(x)=\{y \in V,\{x, y\} \in E\}$. With each subset X of V is
associated the subgraph $G[X]=\left(X, E \cap\binom{X}{2}\right)$ of G induced by X. An isomorphism from a graph $G=(V, E)$ onto a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a bijection f from V onto V^{\prime} such that, for all $x, y \in V,\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E^{\prime}$. A graph G is connected if for all $x \neq y \in V(G)$, there is a sequence $x_{0}=x, \ldots, x_{m}=y$ of vertices of G such that for all $i \in \mathbb{N}_{m}$, $\left\{x_{i}, x_{i+1}\right\} \in E(G)$. For example, given $n \geqslant 1$, the graph $G_{2 n}=\left(\mathbb{N}_{2 n},\left\{\{x, y\} \in\binom{\mathbb{N}_{2 n}}{2}:|y-x| \geqslant n\right\}\right)$ is connected. A connected component of a graph G is a maximal subset X of $V(G)$ (with respect to inclusion) such that $G[X]$ is connected. The set of the connected components of G is a partition of $V(G)$, denoted by $\mathscr{C}(G)$. Let $T=(V, A)$ be an indecomposable tournament. With each subset X of V such that $|X| \geqslant 3$ and $T[X]$ is indecomposable, is associated its outside graph G_{X}^{T} defined by $V\left(G_{X}^{T}\right)=V \backslash X$ and $E\left(G_{X}^{T}\right)=\left\{\{x, y\} \in\binom{V \backslash X}{2}: T[X \cup\{x, y\}]\right.$ is indecomposable $\}$. We now present the characterization of the partially critical tournaments.

Theorem 2.2. (See [7].) Consider a tournament $T=(V, A)$ with a subset X of V such that $|X| \geqslant 3$ and $T[X]$ is indecomposable. The tournament T is $T[X]$-critical if and only if the assertions below hold.
(i) $\operatorname{Ext}(X)=\emptyset$.
(ii) For all $u \in X$, the tournaments $T\left[X^{-}(u) \cup X^{+}(u) \cup\{u\}\right]$ and $T\left[X^{-} \cup X^{+} \cup\{u\}\right]$ are transitive.
(iii) For each $Q \in \mathscr{C}\left(G_{X}^{T}\right)$, there is an isomorphism f from $G_{2 n}$ onto $G_{X}^{T}[Q]$ such that $Q_{1}, Q_{2} \in q_{X}^{T}$, where $Q_{1}=f\left(\mathbb{N}_{n}\right)$ and $Q_{2}=f\left(\mathbb{N}_{2 n} \backslash \mathbb{N}_{n}\right)$. Moreover, for all $x \in Q_{i}(i=1$ or 2$),\left|N_{G_{X}^{T}}(x)\right|=\left|N_{T\left[Q_{i}\right]}^{+}(x)\right|+1\left(\right.$ resp. $\left.n-\left|N_{T\left[Q_{i}\right]}^{+}(x)\right|\right)$ if $Q_{i}=X^{+}$or $X^{-}(u)\left(\right.$ resp. $Q_{i}=X^{-}$or $\left.X^{+}(u)\right)$, where $u \in X$.

The next corollary follows from Theorem 2.2.
Corollary 2.3. Let T be a $T[X]$-critical tournament, T is entirely determined up to isomorphism by giving $T[X], q_{X}^{T}$ and $\mathscr{C}\left(G_{X}^{T}\right)$. Moreover, the tournament T is exactly determined by giving, in addition, either the graphs $G_{X}^{T}[Q]$ for any $Q \in \mathscr{C}\left(G_{X}^{T}\right)$, or the transitive tournaments $T[Y]$ for any $Y \in q_{X}^{T}$.

We underline the importance of Theorem 2.2 and Corollary 2.3 in our description of the tournaments of the class \mathscr{T}. Indeed, these tournaments are introduced up to isomorphism as C_{3}-critical tournaments T defined by giving $\mathscr{C}\left(G_{\mathbb{N}_{3}}^{T}\right)$ in terms of the nonempty elements of $q_{\mathbb{N}_{3}}^{T}$. Fig. 1 illustrates a tournament obtained from such information. We refer to [7, Discussion] for more details about this purpose.

We now introduce the class \mathscr{H} (resp. $\mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L}$) of the C_{3}-critical tournaments H (resp. I, J, K, L) such that:

- $\mathscr{C}\left(G_{\mathbb{N}_{3}}^{H}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(1)\right\}$ (see Fig. 1);
- $\mathscr{C}\left(G_{\mathbb{N}_{3}}^{I}\right)=\left\{\mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{+}(2), \mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}(0)\right\} ;$
$-\mathscr{C}\left(G_{\mathbb{N}_{3}}^{J}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{-}(1) \cup \mathbb{N}_{3}^{-}(0)\right\} ;$
$-\mathscr{C}\left(G_{\mathbb{N}_{3}}^{K}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(2)\right\} ;$
$-\mathscr{C}\left(G_{\mathbb{N}_{3}}^{L}\right)=\left\{\mathbb{N}_{3}^{+}(1) \cup \mathbb{N}_{3}^{-}, \mathbb{N}_{3}^{+}(0) \cup \mathbb{N}_{3}^{-}(2), \mathbb{N}_{3}^{+} \cup \mathbb{N}_{3}^{-}(0)\right\}$.
Notice that for $\mathscr{X}=\mathscr{H}, \mathscr{I}, \mathscr{J}$ or $\mathscr{K},\{|V(T)|: T \in \mathscr{X}\}=\{2 n+1: n \geqslant 3\}$ and $\{|V(T)|: T \in \mathscr{L}\}=\{2 n+1: n \geqslant 4\}$. We denote by \mathscr{H}^{\star} (resp. $\left.\mathscr{I}^{\star}, \mathscr{J}^{\star}, \mathscr{K}^{\star}, \mathscr{L}^{\star}\right)$ the class of the tournaments T^{\star}, where $T \in \mathscr{H}($ resp. $\mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L})$.

Remark 1. We have $\mathscr{H}^{\star}=\mathscr{H}$ and $\mathscr{I}^{\star}=\mathscr{I}$.
By setting $\mathscr{M}=\mathscr{H} \cup \mathscr{I} \cup \mathscr{J} \cup \mathscr{J}^{\star} \cup \mathscr{K} \cup \mathscr{K}^{\star} \cup \mathscr{L} \cup \mathscr{L}^{\star}$, we state our main result as follows.
Theorem 2.4. Up to isomorphism, the tournaments of the class \mathscr{T} are those of the class \mathscr{M}. Moreover, for all $T \in \mathscr{M}$, we have $V(T) \backslash W_{5}(T)=\sigma(T)=\{0,1\}$.

3. The sketch of the proof of Theorem 2.4

The complete proof of Theorem 2.4 can be found in [2], we give here the main ideas. Proposition 2.1 leads us to partition the tournaments T of the class \mathscr{T} according to the different values of an invariant $c(T)$ defined as follows. For $T \in \mathscr{T}, c(T)$ is the minimum of $\left|\mathscr{C}\left(G_{\sigma(T) \cup\{x\}}^{T}\right)\right|$, the minimum being taken over all the vertices x of $W_{5}(T)$ such that $T[\sigma(T) \cup\{x\}] \simeq C_{3}$. Notice that $c(T)=c\left(T^{\star}\right)$. As T is $T[\sigma(T) \cup\{x\}]$-critical by Proposition 2.1, then $c(T) \leqslant 4$. Moreover, $c(T) \geqslant 2$ by the following lemma.

Lemma 3.1. Given a C_{3}-critical tournament T on at least 5 vertices, if $G_{\mathbb{N}_{3}}^{T}$ is connected, then $\sigma(T)=\emptyset$.

Fig. 1. A tournament T of the class \mathscr{H}.
Theorem 2.4 results from the following propositions.
Proposition 3.2. For all tournament T of the class \mathscr{M}, we have $V(T) \backslash W_{5}(T)=\sigma(T)=\{0,1\}$.

Proposition 3.3. Up to isomorphism, the tournaments T of the class \mathscr{T} such that $c(T)=2$ are those of the class $\mathscr{M} \backslash\left(\mathscr{L} \cup \mathscr{L}^{\star}\right)$.
Proposition 3.4. Up to isomorphism, the tournaments T of the class \mathscr{T} such that $c(T)=3$ are those of the class $\mathscr{L} \cup \mathscr{L}^{\star}$.
Proposition 3.5. For any tournament T of the class \mathscr{T}, we have $c(T)=2$ or 3 .

References

[1] H. Belkhechine, I. Boudabbous, K. Hzami, Sous-tournois isomorphes à W_{5} dans un tournoi indécomposable, C. R. Acad. Sci. Paris, Ser. I 350 (2012) 333-337.
[2] H. Belkhechine, I. Boudabbous, K. Hzami, The indecomposable tournaments T with $\left|W_{5}(T)\right|=|T|-2$, http://arxiv.org/abs/1307.5027, 2013.
[3] A. Breiner, J. Deogun, P. Ille, Partially critical indecomposable graphs, Contrib. Discrete Math. 3 (2008) 40-59.
[4] R. Fraïssé, L'intervalle en théorie des relations, ses généralisations, filtre intervallaire et clôture d'une relation, in: M. Pouzet, D. Richard (Eds.), Orders, Description and Roles, North-Holland, Amsterdam, 1984, pp. 313-342.
[5] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71-78.
[6] B.J. Latka, Structure theorem for tournaments omitting N_{5}, J. Graph Theory 42 (2003) 165-192.
[7] M.Y. Sayar, Partially critical indecomposable tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011) 52-76.
[8] J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191-205.

[^0]: E-mail addresses: houmem@gmail.com (H. Belkhechine), imed.boudabbous@gmail.com (I. Boudabbous), hzamikawthar@gmail.com (K. Hzami).
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.07.021

