Harmonic Analysis

The John-Nirenberg inequality with sharp constants

CrossMark

Meilleures constantes dans l'inégalité de John-Nirenberg

Andrei K. Lerner

Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, Israel

A R T I C L E I N F O

Article history:

Received 14 March 2013
Accepted after revision 3 July 2013
Available online 29 July 2013
Presented by Yves Meyer

A B S TRACT

We consider the one-dimensional John-Nirenberg inequality:

$$
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>\alpha\right\}\right| \leqslant C_{1}\left|I_{0}\right| \exp \left(-\frac{C_{2}}{\|f\|_{*}} \alpha\right)
$$

A. Korenovskii found that the sharp C_{2} here is $C_{2}=2 / \mathrm{e}$. It is shown in this paper that if $C_{2}=2 / \mathrm{e}$, then the best possible C_{1} is $C_{1}=\frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}$.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On considère l'inégalité de John-Nirenberg unidimensionnelle :

$$
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>\alpha\right\}\right| \leqslant C_{1}\left|I_{0}\right| \exp \left(-\frac{C_{2}}{\|f\|_{*}} \alpha\right) .
$$

A. Korenovskii a montré que la meilleure constante C_{2} était égale à $2 / \mathrm{e}$. Dans cette Note, on montre que si $C_{2}=2 / \mathrm{e}$, alors la meilleure constante possible pour C_{1} est $C_{1}=\frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}$.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $I_{0} \subset \mathbb{R}$ be an interval and let f be an integrable function on I_{0}. Given a measurable set $E \subset \mathbb{R}$, denote by $|E|$ its Lebesgue measure. Given a subinterval $I \subset I_{0}$, set $f_{I}=\frac{1}{|I|} \int_{I} f$ and

$$
\Omega(f ; I)=\frac{1}{|I|} \int_{I}\left|f(x)-f_{I}\right| \mathrm{d} x
$$

We say that $f \in B M O\left(I_{0}\right)$ if $\|f\|_{*} \equiv \sup _{I \subset I_{0}} \Omega(f ; I)<\infty$. The classical John-Nirenberg inequality [1] says that there are $C_{1}, C_{2}>0$ such that for any $f \in B M O\left(I_{0}\right)$,

$$
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>\alpha\right\}\right| \leqslant C_{1}\left|I_{0}\right| \exp \left(-\frac{C_{2}}{\|f\|_{*}} \alpha\right) \quad(\alpha>0)
$$

A. Korenovskii [4] (see also [5, p. 77]) found the best possible constant C_{2} in this inequality, namely, he showed that $C_{2}=2 / \mathrm{e}:$

[^0]\[

$$
\begin{equation*}
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>\alpha\right\}\right| \leqslant C_{1}\left|I_{0}\right| \exp \left(-\frac{2 / \mathrm{e}}{\|f\|_{*}} \alpha\right) \quad(\alpha>0) \tag{1.1}
\end{equation*}
$$

\]

and in general the constant $2 / \mathrm{e}$ here cannot be increased.
A question about the sharp C_{1} in (1.1) remained open. In [4], (1.1) was proved with $C_{1}=e^{1+2 / e}=5.67323 \ldots$. The method of the proof in [4] was based on the Riesz sunrise lemma and on the use of non-increasing rearrangements. In this paper, we give a different proof of (1.1), yielding the sharp constant $C_{1}=\frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}=2.17792 \ldots$.

Theorem 1.1. Inequality (1.1) holds with $C_{1}=\frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}$, and this constant is the best possible.
We also use as the main tool the Riesz sunrise lemma. But instead of the rearrangement inequalities, we obtain a direct pointwise estimate for any BMO-function (see Theorem 2.2 below). The proof of this result is inspired (and close in spirit) by a recent decomposition of an arbitrary measurable function in terms of mean oscillations (see [2,6]).

We mention several recent papers $[7,8]$ where sharp constants in some different John-Nirenberg-type estimates were found by means of the Bellman function method.

2. Proof of Theorem 1.1

We shall use the following version of the Riesz sunrise lemma [3].
Lemma 2.1. Let g be an integrable function on some interval $I_{0} \subset \mathbb{R}$, and suppose $g_{I_{0}} \leqslant \alpha$. Then there is at most countable family of pairwise disjoint subintervals $I_{j} \subset I_{0}$ such that $g_{I_{j}}=\alpha$, and $g(x) \leqslant \alpha$ for almost all $x \in I_{0} \backslash\left(\bigcup_{j} I_{j}\right)$.

Observe that the family $\left\{I_{j}\right\}$ in Lemma 2.1 may be empty if $g(x)<\alpha$ a.e. on I_{0}.
Theorem 2.2. Let $f \in B M O\left(I_{0}\right)$, and let $0<\gamma<1$. Then there is at most countable decreasing sequence of measurable sets $G_{k} \subset I_{0}$ such that $\left|G_{k}\right| \leqslant \min \left(2 \gamma^{k}, 1\right)\left|I_{0}\right|$ and for a.e. $x \in I_{0}$,

$$
\begin{equation*}
\left|f(x)-f_{I_{0}}\right| \leqslant \frac{\|f\|_{*}}{2 \gamma} \sum_{k=0}^{\infty} \chi_{G_{k}}(x) . \tag{2.1}
\end{equation*}
$$

Proof. Given an interval $I \subseteq I_{0}$, set $E(I)=\left\{x \in I: f(x)>f_{I}\right\}$. Let us show that there is at most a countable family of pairwise disjoint subintervals $I_{j} \subset I_{0}$ such that $\sum_{j}\left|I_{j}\right| \leqslant \gamma\left|I_{0}\right|$ and for a.e. $x \in I_{0}$,

$$
\begin{equation*}
\left(f-f_{I_{0}}\right) \chi_{E\left(I_{0}\right)} \leqslant \frac{\|f\|_{*}}{2 \gamma} \chi_{E\left(I_{0}\right)}+\sum_{j}\left(f-f_{I_{j}}\right) \chi_{E\left(I_{j}\right)} \tag{2.2}
\end{equation*}
$$

We apply Lemma 2.1 with $g=f-f_{I_{0}}$ and $\alpha=\frac{\|f\|_{*}}{2 \gamma}$. One can assume that $\alpha>0$ and the family of intervals $\left\{I_{j}\right\}$ from Lemma 2.1 is non-empty (since otherwise (2.2) holds trivially only with the first term on the right-hand side). Since $g_{I_{j}}=\alpha$, we obtain:

$$
\begin{aligned}
\sum_{j}\left|I_{j}\right|=\frac{1}{\alpha} \int_{\bigcup_{j} I_{j}}\left(f-f_{I_{0}}\right) \mathrm{d} x & \leqslant \frac{1}{\alpha} \int_{\left\{x \in I_{0}: f(x)>f_{I_{0}}\right\}}\left(f-f_{I_{0}}\right) \mathrm{d} x \\
& =\frac{1}{2 \alpha} \Omega\left(f ; I_{0}\right)\left|I_{0}\right| \leqslant \gamma\left|I_{0}\right|
\end{aligned}
$$

Since $g_{I_{j}}=\alpha$, we have $f_{I_{j}}=f_{I_{0}}+\alpha$, and hence:

$$
f-f_{I_{0}}=\left(f-f_{I_{0}}\right) \chi_{I_{0} \backslash \cup_{j} I_{j}}+\alpha \chi_{\cup_{j} I_{j}}+\sum_{j}\left(f-f_{I_{j}}\right) \chi_{I_{j}}
$$

This proves (2.2) since $f-f_{I_{0}} \leqslant \alpha$ a.e. on $I_{0} \backslash \bigcup_{j} I_{j}$.
The sum on the right-hand side of (2.2) consists of the terms of the same form as the left-hand side. Therefore, one can proceed iterating (2.2). Denote $I_{j}^{1}=I_{j}$, and let I_{j}^{k} be the intervals obtained after the k-th step of the process. Iterating (2.2) m times yields:

$$
\left(f-f_{I_{0}}\right) \chi_{E\left(I_{0}\right)} \leqslant \frac{\|f\|_{*}}{2 \gamma} \sum_{k=0}^{m} \sum_{j} \chi_{E\left(I_{j}^{k}\right)}(x)+\sum_{i}\left(f-f_{I_{i}^{m+1}}\right) \chi_{E\left(I_{i}^{m+1}\right)}
$$

(where $I_{j}^{0}=I_{0}$). If there is m such that for any i each term of the second sum is bounded trivially by $\frac{\|f\|_{*}}{2 \gamma} \chi_{E\left(I_{i}^{m+1}\right)}$, we stop the process, and we would obtain the finite sum with respect to k. Otherwise, let $m \rightarrow \infty$. Using that

$$
\left|\bigcup_{i} I_{i}^{m+1}\right| \leqslant \gamma\left|\bigcup_{l} I_{l}^{m}\right| \leqslant \cdots \leqslant \gamma^{m+1}\left|I_{0}\right|
$$

we get that the support of the second term will tend to a null set. Hence, setting $E_{k}=\bigcup_{j} E\left(I_{j}^{k}\right)$, for a.e. $x \in E\left(I_{0}\right)$ we obtain:

$$
\begin{equation*}
\left(f-f_{I_{0}}\right) \chi_{E\left(I_{0}\right)} \leqslant \frac{\|f\|_{*}}{2 \gamma}\left(\chi_{E\left(I_{0}\right)}(x)+\sum_{k=1}^{\infty} \chi_{E_{k}}(x)\right) \tag{2.3}
\end{equation*}
$$

Observe that $E\left(I_{j}\right)=\left\{x \in I_{j}: f(x)>f_{I_{0}}+\alpha\right\} \subset E\left(I_{0}\right)$. From this and from the above process we easily get that $E_{k+1} \subset E_{k}$. Also, $E_{k} \subset \bigcup_{j} I_{j}^{k}$, and hence $\left|E_{k}\right| \leqslant \gamma^{k}\left|I_{0}\right|$.

Setting now $F(I)=\left\{x \in I: f(x) \leqslant f_{I}\right\}$, and applying the same argument to $\left(f_{I_{0}}-f\right) \chi_{F(I)}$, we obtain:

$$
\begin{equation*}
\left(f_{I_{0}}-f\right) \chi_{F\left(I_{0}\right)} \leqslant \frac{\|f\|_{*}}{2 \gamma}\left(\chi_{F\left(I_{0}\right)}(x)+\sum_{k=1}^{\infty} \chi_{F_{k}}(x)\right) \tag{2.4}
\end{equation*}
$$

where $F_{k+1} \subset F_{k}$ and $\left|F_{k}\right| \leqslant \gamma^{k}\left|I_{0}\right|$. Also, $F_{k} \cap E_{k}=\emptyset$. Therefore, summing (2.3) and (2.4) and setting $G_{0}=I_{0}$ and $G_{k}=$ $E_{k} \cup F_{k}, k \geqslant 1$, we get (2.1).

Proof of Theorem 1.1. Let us show first that the best possible C_{1} in (1.1) satisfies $C_{1} \geqslant \frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}$. It suffices to give an example of f on I_{0} such that for any $\varepsilon>0$,

$$
\begin{equation*}
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>2(1-\varepsilon)\|f\|_{*}\right\}\right|=\left|I_{0}\right| / 2 \tag{2.5}
\end{equation*}
$$

Let $I_{0}=[0,1]$ and take $f=\chi_{[0,1 / 4]}-\chi_{[3 / 4,1]}$. Then $f_{I_{0}}=0$. Hence, (2.5) would follow from $\|f\|_{*}=1 / 2$. To show the latter fact, take an arbitrary $I \subset I_{0}$. It is easy to see that computations reduce to the following cases: I contains only $1 / 4$ and I contains both $1 / 4$ and $3 / 4$.

Assume that $I=(a, b), 1 / 4 \in I$, and $b<3 / 4$. Let $\alpha=\frac{1}{4}-a$ and $\beta=b-\frac{1}{4}$. Then $f_{I}=\alpha /(\alpha+\beta)$ and:

$$
\Omega(f ; I)=\frac{2}{\alpha+\beta} \int_{\left\{x \in I: f>f_{I}\right\}}\left(f-f_{I}\right)=\frac{2 \alpha \beta}{(\alpha+\beta)^{2}} \leqslant 1 / 2
$$

with $\Omega(f ; I)=1 / 2$ if $\alpha=\beta$.
Consider the second case. Let $I=(a, b), a<1 / 4$ and $b>3 / 4$. Let α be as above and $\beta=b-\frac{3}{4}$. Then:

$$
\left.\Omega(f ; I)=\frac{2}{\alpha+\beta+1 / 2} \int_{\{x \in I:}\left(f>f_{I}\right\}-f_{I}\right)=\frac{4 \alpha(4 \beta+1)}{(2 \alpha+2 \beta+1)^{2}}
$$

Since

$$
\sup _{0 \leqslant \alpha, \beta \leqslant 1 / 4} \frac{4 \alpha(4 \beta+1)}{(2 \alpha+2 \beta+1)^{2}}=1 / 2,
$$

this proves that $\|f\|_{*}=1 / 2$. Therefore, $C_{1} \geqslant \frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}$. Let us show now the converse inequality.
Let $f \in B M O\left(I_{0}\right)$. Setting $\psi(x)=\sum_{k=0}^{\infty} \chi_{G_{k}}(x)$, where G_{k} are from Theorem 2.2, we have:

$$
\begin{aligned}
\left|\left\{x \in I_{0}: \psi(x)>\alpha\right\}\right| & =\sum_{k=0}^{\infty}\left|G_{k}\right| \chi_{[k, k+1)}(\alpha) \\
& \leqslant\left|I_{0}\right| \sum_{k=0}^{\infty} \min \left(1,2 \gamma^{k}\right) \chi_{[k, k+1)}(\alpha)
\end{aligned}
$$

Hence, by (2.1),

$$
\begin{aligned}
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>\alpha\right\}\right| & \leqslant\left|\left\{x \in I_{0}: \psi(x)>2 \gamma \alpha /\|f\|_{*}\right\}\right| \\
& \leqslant\left|I_{0}\right| \sum_{k=0}^{\infty} \min \left(2 \gamma^{k}, 1\right) \chi_{[k, k+1)}\left(2 \gamma \alpha /\|f\|_{*}\right) .
\end{aligned}
$$

This estimate holds for any $0<\gamma<1$. Therefore, taking here the infimum over $0<\gamma<1$, we obtain:

$$
\left|\left\{x \in I_{0}:\left|f(x)-f_{I_{0}}\right|>\alpha\right\}\right| \leqslant \varphi\left(\frac{2 / \mathrm{e}}{\|f\|_{*}} \alpha\right)\left|I_{0}\right|
$$

where

$$
\varphi(\xi)=\inf _{0<\gamma<1} \sum_{k=0}^{\infty} \min \left(2 \gamma^{k}, 1\right) \chi_{[k, k+1)}(\gamma \mathrm{e} \xi)
$$

Thus, the theorem would follow from the following estimate:

$$
\begin{equation*}
\varphi(\xi) \leqslant \frac{1}{2} \mathrm{e}^{\frac{4}{\mathrm{e}}-\xi} \quad(\xi>0) \tag{2.6}
\end{equation*}
$$

It is easy to see that $\varphi(\xi)=1$ for $0<\xi \leqslant 2 / \mathrm{e}$, and in this case (2.6) holds trivially. Next, $\varphi(\xi)=\frac{2}{\mathrm{e} \xi}$ for $2 / \mathrm{e} \leqslant \xi \leqslant 4 / \mathrm{e}$. Using that the function e^{ξ} / ξ is increasing on $(1, \infty)$ and decreasing on $(0,1)$, we get:

$$
\max _{\xi \in[2 / \mathrm{e}, 4 / \mathrm{e}]} 2 \mathrm{e}^{\xi} / \mathrm{e} \xi=\frac{1}{2} \mathrm{e}^{4 / \mathrm{e}},
$$

verifying (2.6) for $2 / \mathrm{e} \leqslant \xi \leqslant 4 / \mathrm{e}$.
For $\xi \geqslant 1$ we estimate $\varphi(\xi)$ as follows. Let $\xi \in[m, m+1), m \in \mathbb{N}$. Taking $\gamma_{i}=i / \mathrm{e} \xi$ for $i=m$ and $i=m+1$, we get:

$$
\begin{align*}
\varphi(\xi) & \leqslant 2 \min \left(\left(\frac{m}{\mathrm{e} \xi}\right)^{m},\left(\frac{m+1}{\mathrm{e} \xi}\right)^{m+1}\right) \\
& =2\left(\left(\frac{m}{\mathrm{e} \xi}\right)^{m} \chi_{\left[m, \xi_{m}\right]}(\xi)+\left(\frac{m+1}{\mathrm{e} \xi}\right)^{m+1} \chi_{\left[\xi_{m}, m+1\right)}(\xi)\right) \tag{2.7}
\end{align*}
$$

where $\xi_{m}=\frac{1}{\mathrm{e}} \frac{(m+1)^{m+1}}{m^{m}}$. Using the fact that the function $\mathrm{e}^{\xi} / \xi^{m}$ is increasing on (m, ∞) and decreasing on ($0, m$), by (2.7) we obtain that for $\xi \in[m, m+1)$,

$$
\varphi(\xi) \mathrm{e}^{\xi} \leqslant 2\left(\frac{m}{\mathrm{e} \xi_{m}}\right)^{m} \mathrm{e}^{\xi_{m}}=2\left(\frac{\mathrm{e}^{\frac{1}{\mathrm{e}}(1+1 / m)^{m}}}{(1+1 / m)^{m}}\right)^{m+1} \equiv c_{m}
$$

Let us show now that the sequence $\left\{c_{m}\right\}$ is decreasing. This would finish the proof since $c_{1}=\frac{1}{2} \mathrm{e}^{4 / \mathrm{e}}$. Let $\eta(x)=(1+1 / x)^{x}$ for $x>0$, and

$$
v(x)=\left(\mathrm{e}^{\eta(x) / \mathrm{e}} / \eta(x)\right)^{x+1}
$$

Then $c_{m}=2 \nu(m)$ and hence it suffices to show that $\nu^{\prime}(x)<0$ for $x \geqslant 1$. We have:

$$
v^{\prime}(x)=v(x)\left(\log \frac{\mathrm{e}}{\eta(x)}-(1-\eta(x) / \mathrm{e}) \log (1+1 / x)^{1+x}\right)
$$

Since $\eta(x)(1+1 / x)>\mathrm{e}$, we get $\mu(x)=\frac{\eta(x)}{\mathrm{e}-\eta(x)}>x$. From this and from the fact that the function $(1+1 / x)^{1+x}$ is decreasing, we obtain:

$$
(\mathrm{e} / \eta(x))^{\frac{1}{1-\eta(x) / \mathrm{e}}}=(1+1 / \mu(x))^{1+\mu(x)}<(1+1 / x)^{1+x}
$$

which is equivalent to that $v^{\prime}(x)<0$.

References

[1] F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math. 14 (1961) 415-426.
[2] T. Hytönen, The A_{2} theorem: Remarks and complements, preprint, available at http://arxiv.org/abs/1212.3840.
[3] I. Klemes, A mean oscillation inequality, Proc. Amer. Math. Soc. 93 (3) (1985) 497-500.
[4] A.A. Korenovskii, The connection between mean oscillations and exact exponents of summability of functions, Mat. Sb. 181 (12) (1990) $1721-1727$ (in Russian); translation in Math. USSR-Sb. 71 (2) (1992) 561-567.
[5] A.A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions, Lect. Notes Unione Mat. Ital., vol. 4, Springer/UMI, Berlin/Bologna, 2007.
[6] A.K. Lerner, A pointwise estimate for local sharp maximal function with applications to singular integrals, Bull. London Math. Soc. 42 (5) (2010) $843-856$.
[7] L. Slavin, V. Vasyunin, Sharp results in the integral-form John-Nirenberg inequality, Trans. Amer. Math. Soc. 363 (8) (2011) 4135-4169.
[8] V. Vasyunin, A. Volberg, Sharp constants in the classical weak form of the John-Nirenberg inequality, preprint, available at http://arxiv.org/abs/ 1204.1782.

[^0]: E-mail address: aklerner@netvision.net.il.

