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The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient
conditions for a pair of subnormal operators on Hilbert space to admit commuting
normal extensions. Given a 2-variable weighted shift T with diagonal core, we prove
that LPCS is soluble for T if and only if LPCS is soluble for some power Tm (m ∈ Z

2+,

m ≡ (m1,m2), m1,m2 � 1). We do this by first developing the basic properties of diagonal
cores, and then analyzing how a diagonal core interacts with the rest of the 2-variable
weighted shift.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le problème du relèvement des opérateurs sous-normaux commutatifs (LPCS) consiste
à rechercher des conditions nécessaires ou suffisantes pour que deux opérateurs sous-
normaux sur l’espace de Hilbert admettent des extensions normales commutatives. Étant
donné un opérateur de décalage pondéré T à deux variables avec cœur diagonal, nous
prouvons que le LPCS est résoluble pour T si et seulement si le LPCS est résoluble pour
une certaine puissance Tm (m ∈ Z

2+,m ≡ (m1,m2), m1,m2 � 1). Nous le faisons en
développant d’abord les propriétés de base des cœurs diagonaux, puis en analysant la façon
dont un cœur diagonal interagit avec le reste de l’opérateur.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For an operator T on Hilbert space, it is well known that the subnormality of T implies the subnormality of T m (m � 2).
The converse implication, however, is false; in fact, the subnormality of all powers T m (m � 2) does not necessarily imply
the subnormality of T , even if T ≡ Wω is a unilateral weighted shift [15,16,20,21]. To study relevant generalizations of these
results in the multivariable case, the standard starting assumptions on a pair T ≡ (T1, T2) are that T1T2 = T2T1 and that
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Fig. 1. Weight diagrams of Θ(Wω) and W (α,β) with c(W (α,β)) ∼= Θ(Wω); and Berger measure diagram of W (α,β) with c(W (α,β)) ∼= Θ(Wω), respectively.

Fig. 1. Schéma des poids de Θ(Wω) et W (α,β) avec c(W (α,β)) ∼= Θ(Wω) ; et schéma de la mesure de Berger de W (α,β) avec c(W (α,β)) ∼= Θ(Wω), respecti-
vement.

each component Ti is subnormal (i = 1,2). With this in hand, multivariable versions of the 1-variable results are highly
nontrivial.

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnor-
mal operators on Hilbert space to admit commuting normal extensions. Single and multivariable weighted shifts have played
an important role in the study of LPCS. They have also played a significant role in the study of cyclicity and reflexivity, in the
study of C∗-algebras generated by multiplication operators on Bergman spaces, as fertile ground to test new hypotheses,
and as canonical models for theories of dilation and positivity (cf. [5–7,9,11–13,17–20]). In our previous work we have
studied LPCS from a number of different approaches. One such approach is to consider a commuting pair T of subnormal
operators and to ask to what extent the existence of liftings for the powers Tm := (T m1

1 , T m2
2 ) (m1,m2 � 1) can guarantee

a lifting for T. E. Franks proved in [14] that a commuting pair T is subnormal if and only if p(T1, T2) is subnormal for all
polynomials p in two variables of total degree at most 5. This result motivates the question of whether the subnormality
of a pair of powers (T m1

1 , T m2
2 ) can be used to establish the subnormality of T [10]. Given two bounded double-indexed se-

quences α and β we define the 2-variable weighted shift W (α,β) ≡ (T1, T2) acting on �2(Z2+) by T1e(k1,k2) := α(k1,k2)e(k1+1,k2)

and T2e(k1,k2) := β(k1,k2)e(k1,k2+1) with T1T2 = T2T1, where {e(k1,k2)} denotes the canonical orthonormal basis of �2(Z2+). For
the class of 2-variable weighted shifts, it is often the case that the powers are less complex than the initial pair; thus it
becomes especially significant to unravel LPCS under the action (m1,m2) �→ W (m1,m2)

(α,β) ≡ T(m1,m2) (m1,m2 � 1).
For the class of 2-variable weighted shifts with core of tensor form, denoted T C , we showed in [12] that if W (α,β) ∈ T C ,

then W (α,β) is subnormal if and only if W (m1,m2)
(α,β) is subnormal for some m1,m2 � 1. We thus characterized LPCS in terms of

the above action in the class T C . (The core c(W (α,β)) of a 2-variable weighted shift is the restriction of W (α,β) to the sub-
space generated by {e(k1,k2)}k1,k2�1; we say that c(W (α,β)) is of tensor form if it is unitarily equivalent to (I ⊗ Wε, Wν ⊗ I)
for some unilateral weighted shifts Wε and Wν .)

In this paper, we study a new class, DC , of multivariable weighted shifts, those with diagonal core. Put simply, a core
of tensor form corresponds to a Berger measure of the form ξ × η, while a diagonal core is associated to a Berger measure
supported in the diagonal {(s, s) ∈ R2: s � 0} (see Fig. 1(i)). The classes T C and DC share some properties, but not others.
For example, restrictions of shifts in DC do remain in DC , just as it happens for the class T C . On the other hand, the power
of a weighted shift in the class T C splits as a direct sum of shifts in T C , while the same is not true for shifts with diagonal
core. Thus, while LPCS is soluble in T C for T if and only if it is soluble for any power Tm , as we mentioned above, it is not
a priori obvious whether the same result holds in the class DC . Our main result establishes that this is indeed the case (see
Section 3 below).

Given a 1-variable unilateral weighted shift Wω associated with a weight sequence {ωk}∞k=0, we embed ω into �2(Z2+)

as follows:

α(k1,k2) ≡ β(k1,k2) := ωk1+k2 (k1,k2 � 0). (1)

We denote the associated 2-variable weighted by Θ(Wω) (see Fig. 1(i)); we will soon see that Θ(Wω) ∈ DC . The Berger
measure of Wω , denoted by μ ≡ μ[ω], is the unique probability Borel measure compactly supported in R satisfying∫

sn dμ(s) = γn := ω2
0 · · ·ω2

n−1 for all n � 1) [1, III.8.16]; γn is called the n-th moment of ω.
In Section 2, we first prove that the map Θ preserves many structural properties, like k-hyponormality and subnormality,

and that the Berger measure of a subnormal Wω transfers in a canonical way to Θ(Wω). Observe that 2-variable weighted
shifts with diagonal core can be regarded as antipodal to those whose core is of tensor form, since the Berger measure for
their (diagonal) core is supported in a “thin” set (the diagonal {(s, s): s ∈ R}), while for the other class the Berger measure
is as “thick” as possible, that is, a Cartesian product.

We end this section by introducing some notation which will be needed later. We denote the class of commuting pairs
of operators on Hilbert space by C0, the class of subnormal pairs by C∞ ≡ H∞ , and for an integer k � 1, the class of k-
hyponormal pairs in C0 by Ck . We show that C∞ � · · · � Ck � · · · � C1 � C0 (Corollary 2.3). We also denote the class of
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commuting pairs of subnormal operators on Hilbert space by H0, and for an integer k � 1, the class of k-hyponormal pairs
in H0 by Hk . For each integer k � 0, it is possible to prove that Hk � Ck .

Let R(i, j)(W (α,β)) denote the restriction of W (α,β) to Mi ∩ N j , where Mi := ∨{e(k1,k2): k1 � 0,k2 � i} and N j :=∨{e(k1,k2): k1 � j,k2 � 0}. The core of W (α,β) , c(W (α,β)) is R(1,1)(W (α,β)). We let T C := {W (α,β) ∈ H0: c(W (α,β)) is of
tensor form} and DC := {W (α,β) ∈ H0: c(W (α,β)) = Θ(shift(α1,1,α2,1,α3,1, . . .))}. For a weighted sequence ω ≡ {ωn}∞n=0,
the diagonal embedding (1) gives rise to a commuting 2-variable weighted shift Θ(Wω), as can be easily proved. For
each k ∈ Z2+ , we let Bk := {W (α,β) ∈ H0: Rk(W (α,β)) ∈ ran Θ}. Observe that for k,m ∈ Z2+ with k � m (i.e., m − k ∈ Z2+),
we have Bk ⊆ Bm . Thus, the collection {Bk} forms an ascending chain with respect to set inclusion and the partial order
induced by Z2+ . Moreover, DC = B11 ⊆ Bk for all k ∈ Z2+ . We prove that for all k ∈ Z2+ , Bk = DC . We do this by applying
[5, Proposition 1.5], which states that in a subnormal unilateral weighted shift Wω each weight ωk (k � 1) is completely
determined by the Berger measure of the restriction of Wω to the invariant subspace generated by {ek+1, ek+2, . . .}.

Given integers p and m (m � 1,0 � p � m −1), consider H ≡ �2(Z+) = ∨{en: n � 0} and define Hp := ∨{em�+p: � � 0},
so H = ⊕m−1

p=0 Hp . For a sequence ω ≡ {ωn}∞n=0, let ω(m : p) := {∏m−1
k=0 ωm�+p+k}∞�=0. Then for m � 1 and 0 � p � m − 1,

W m
ω is unitarily equivalent to

⊕m−1
p=0 Wω(m:p) . It is well known that for a subnormal unilateral weighted shift Wω with

moments {γn}n�0 and Berger measure dμ(s), Wω(m,p) is subnormal with Berger measure dμ(m,0) (s) = dμ(s
1
m ) and

dμ(m,p) (s) = s
p
m

γp
dμ(s

1
m ) for 1 � p � m − 1 [4, Theorem 2.9]. By analogy with the above-mentioned one-variable de-

composition, we split the ambient space �2(Z2+) as an orthogonal direct sum
⊕m1−1

p=0

⊕m2−1
q=0 H(m1,m2)

(p,q) , where H(m1,m2)
(p,q) :=∨{e(m1k+p,m2�+q): k, � � 0; 0 � p � m1 − 1; 0 � q � m2 − 1}. Each H(m1,m2)

(p,q) reduces T m1
1 and T m2

2 , and Tm is subnormal if
and only if each Tm|H(p,q)

is subnormal, where m := (m1,m2). Our main result states that for 2-variable weighted shifts T
with diagonal core, the subnormality of Tm for some m � 1 := (1,1) implies the subnormality of T.

2. The canonical embedding of a unilateral weighted shift

In this section, we describe some basic results of the canonical embedding ω �−→ Θ(ω) defined by (1). We begin by
listing several well-known results which will be needed in the sequel.

Lemma 2.1. (i) (See [2].) Let Wωei = ωiei+1 (i � 0) be hyponormal. Then for k � 1, Wω is k-hyponormal if and only if the Hankel
matrix H(k;n) := (γn+i+ j−2)

k+1
i, j=1 � 0 for all n � 0.

(ii) (See [8].) Given finite sets of positive real numbers (xi)
n
i=1 and (ωi)

k
i=0 , let Wω := shift(xn, . . . , x1, (ω0, . . . ,ωk)

∧), where
shift((ω0, . . . ,ωk)

∧) denotes the recursively generated weighted shift with initial weights (ω0, . . . ,ωk) (see [3, Section 3]). Then Wω

is subnormal if and only if {Wω is ([ k+1
2 ] + 1)-hyponormal (when n = 1) or Wω is ([ k+1

2 ] + 2)-hyponormal (when n > 1)}.
(iii) (See [9].) W (α,β) ∈ Hk ⇐⇒ Mu(k) := (γu+(n,m)+(p,q))0�n+m�k

0�p+q�k
� 0 ( all u ∈ Z2+). (For u1, u2 � 1, γ(u1,u2) := α2

(0,0)
· · ·

α2
(u1−1,0)β

2
(u1,0) · · ·β2

(u1,u2−1) , γ(u1,0) := α2
(0,0) · · ·α2

(u1−1,0) , γ(0,u2) := β2
(0,0) · · ·β2

(0,u2−1) and γ(0,0) := 1.)
(iv) (See [6].) Let μ be the Berger measure of a subnormal W (α,β) , and for j � 0 let ξ j be the Berger measure of the associ-

ated j-th horizontal 1-variable weighted shift Wα( j) for W (α,β); i.e., Wα( j)e(k1, j) := α(k1, j)e(k1+1, j) (k1 � 0). Then ξ j = μX
j (the

marginal measure of μ j), where dμ j (s, t) := 1
γ0 j

t j dμ(s, t); more precisely, dξ j (s) = { 1
γ0 j

∫
Y t j dΦs (t)}dμX (s), where dμ(s, t) ≡

dΦs (t)dμX (s) is the disintegration of μ by vertical slices. A similar result holds for the Berger measure ηi of the associated i-th vertical
weighted shift Wβ(i) (i � 0) for W (α,β) . (For a measure μ on X × Y , dμX (s) := ∫

Y dμ(s, t) and dμY (t) := ∫
X dμ(s, t).)

(v) (See [5].) Assume that W (α,β) ∈H0 and W (α,β)|M1 is subnormal with associated measure μM1 . Then W (α,β) ∈H∞ ⇔ { 1
t ∈

L1(μM1 ), β2
00 � (‖ 1

t ‖L1(μM1 ))
−1 and β2

00‖ 1
t ‖L1(μM1 )(μM1 )

X
ext � ξ0}. (For a probability measure ν , (ν)ext denotes the extremal

measure associated with ν , defined as d(ν)ext (s, t) := (1 − δ0(t))‖ 1
t ‖L1(μM1 )

1
t dμ(s, t).) In the case when W (α,β) ∈H∞ , the Berger

measure μ of W (α,β) is given by μ = β2
00‖ 1

t ‖L1(μM1 )(μM1 )ext + (ξ0 − β2
00‖ 1

t ‖L1(μM1 )(μM1 )
X
ext) × δ0 .

A probability measure ε on X × X is said to be diagonal if supp ε ⊆ {(s, s): s ∈ X}. We now have:

Theorem 2.2. (a) Let Wω be a unilateral weighted shift, let Θ(ω) be the canonical embedding of ω, and let k � 1. Then Wω is k-
hyponormal if and only if Θ(Wω) ∈ Ck. (b) Wω is subnormal if and only if Θ(Wω) ∈ H∞; in this case, the Berger measure ε of
Θ(Wω) is diagonal. Moreover, ε X is the Berger measure of Wω .

Sketch of proof. First recall that, by Lemma 2.1(i) and (iii), Wω is k-hyponormal if and only if H(k;n) � 0 (all n � 0),
and Θ(Wω) ∈ Ck ⇐⇒ Mu(k) � 0 (all u ≡ (u1, u2) ∈ Z2+). Next, looking at Fig. 1(i), it is easy to conclude that the moments

of Θ(Wω), γ
Θ(Wω)

u , and the moments of Wω , γ Wω
k , are related by the identity γ

Θ(Wω)
u = γ Wω

u1+u2
. Using straightforward row

and column operations, it follows at once that H(k;n) � 0 (all n � 0) if and only if Mu(k) � 0 (all u ∈ Z2+). By Lemma 2.1(i)
and (iii), Wω ∈ Hk if and only if Θ(Wω) ∈ Hk . This establishes (a).
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To prove the first part of (b), recall the Bram–Halmos Criterion (in one variable [1] and two variables [9]), that subnor-
mality is equivalent to k-hyponormality for every k � 1. The remaining statements follow from direct computations using
disintegration-of-measure techniques (cf. [1,6]) and Lemma 2.1(v). �

By Lemma 2.1(ii) and Theorem 2.2, we have:

Corollary 2.3. (i) C∞ � · · · � Ck � · · · � C1 � C0 . (ii) For positive real numbers (xi)
n
i=1 and (ωi)

k
i=0 , if Wω ≡ shift(xn, . . . , x1,

(ω0, . . . ,ωk)
∧), then Wω is subnormal if and only if either Θ(Wω) ∈ C

([ k+1
2 ]+1)

(n = 1) or Θ(Wω) ∈ C
([ k+1

2 ]+2)
(n > 1).

Using disintegration-of-measure techniques [6] and Lemma 2.1(v), we have:

Theorem 2.4. Let ε be a diagonal probability measure on X × Y . Then we have ε X = εY and for all f ∈ C(X × Y ),∫ ∫
f (s, t)dε (s, t) =

∫
X

(∫
Y

f (s, t)dΦt (t)

)
dε X (s) =

∫
X

(∫
Y

f (s, t)dεY (t)

)
dε X (s)

=
∫
Y

(∫
X

f (s, t)dε X (s)

)
dεY (t).

Corollary 2.5. Let Θ(Wω) be subnormal with Berger measure ε . Then for m1,m2 � 1, Θ(Wω)(m1,m2) ∈ ⊕
H∞ . Furthermore,

the Berger measure of Θ(Wω)(m1,m2)|H(m1,m2)

(0,0)

is dε
(m1,m2)
(0,0) (s, t) = dε(s

1
m1 , t

1
m2 ).

Fig. 1(ii) shows the general form of a pair W (α,β) in DC , and that it is uniquely determined by the four parameters σ ,
τ , a and ε , where ε is the Berger measure of c(W (α,β)). Thus, in what follows we will identify a pair W (α,β) ∈DC with the

4-tuple 〈σ ,τ ,a, ε〉. We now let ψ := (τ )1 − a2‖ 1
s ‖L1(ε X )ε

Y and ϕ := σ − β2
(0,0)‖ 1

t ‖L1(ψ)δ0 − a2β2
(0,0)‖ 1

t ‖L1(εY )
ε X

s , where (τ )1

is the Berger measure of the subnormal shift(y1, y2, . . .). Clearly ψ and ϕ are measures. When W (α,β) ∈ DC , we establish
that

W (m1,m2)
(α,β) =

m1−1⊕
p=0

m2−1⊕
q=0

〈
σ

(m1,m2)
(p,q) , τ

(m1,m2)
(p,q) ,a(m1,m2)

(p,q) , ε
(m1,m2)
(p,q)

〉
,

where 〈σ (m1,m2)
(p,q) , τ

(m1,m2)
(p,q) ,a(m1,m2)

(p,q) , ε
(m1,m2)
(p,q) 〉 is the 4-tuple associated to the restriction of W (m1,m2)

(α,β) to the reducing subspace

H(m1,m2)
(p,q) . We note that W (m1,m2)

(α,β) = (W (m1,1)
(α,β) )(1,m2) .

3. Main results

Theorem 3.1. Let W (α,β) ∈DC . Then for q = 0,1, W (m1,m2)
(α,β) |H(m1,m2)

(0,q)

∈H∞ if and only if ψ(m1,m2)
(0,q) and ϕ

(m1,m2)
(0,q) are positive measures.

In the case when W (m1,m2)
(α,β) |H(m1,m2)

(0,q)

∈H∞ , the Berger measure μ of W (m1,m2)
(α,β) |H(m1,m2)

(0,q)

is given by

μ = ϕ
(m1,m2)
(0,q) × δ0 + (

β
(m1,m2)
(0,q)

)2
(

(a(m1,m2)
(0,q) )2ε

(m1,m2)
(0,q)

st
+ δ0 × ψ

(m1,m2)
(0,q)

t

)
.

Theorem 3.2. Let W (α,β) ∈DC and let (m1,m2) � (1,1). Then W (m1,m2)
(α,β) ∈H∞ if and only if W (α,β) ∈H∞ .

Sketch of proof. It suffices to prove necessity, which we do in three steps.
(a) Without loss of generality, we can always assume m1 = 1. Although the class DC is not invariant under powers,

using disintegration-of-measure techniques for multivariable weighted shifts [6], we can show that the pair (ϕ,ψ) associ-
ated with W (α,β) is directly related to the pairs (ϕ

(1,m2)
(0,q)

,ψ
(1,m2)
(0,q)

) associated with the direct summands in the orthogonal

decomposition of W (1,m2)
(α,β) |H(m1,m2)

(0,q)

.

(b) If a power W (1,m2)
(α,β) |H(m1,m2)

(0,q)

is subnormal, the functionals ϕ
(1,m2)
(0,q) and ψ

(1,m2)
(0,q) are both positive measures.

(c) It then follows that ϕ and ψ are positive measures, and therefore W (α,β) is subnormal. �
We conclude this section by showing that the k-hyponormality of Θ(Wω) (k = 1,2) is not invariant under the action

(m1,m2) �→ Θ(Wω)(m1,m2) (m1,m2 � 1).
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Example 3.3. (Please refer to the notation introduced in Lemma 2.1(ii).) For
√

2 � t � 3
2 , let Wω = shift(x5, x4, x3,

x2, x1, (ω0,ω1,ω2)
∧), where x4 :=

√
1
5 , x3 := 1

2 , x2 :=
√

1
2 , x1 := 1, ω0 := √

t , ω1 := √
t + 1 and ω2 := √

t + 2. Then we

have (i) Θ(Wω) ∈ C1 ⇐⇒ 0 < x5 �
√

1
5 ; (ii) Θ(Wω)(2,1) ∈ C1 ⇐⇒ 0 < x5 �

√
25

128 ; (iii) Θ(Wω) ∈ C2 ⇐⇒ 0 < x5 �
√

5
26 ;

(iv) Θ(Wω)(2,1) /∈ C2; (v) Θ(Wω) /∈ C3.
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