

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis/Theory of Signals

Sampling in a weighted Sobolev space

Échantillonage dans un espace de Sobolev avec poids

Nestor G. Acala, Noli N. Reyes

University of the Philippines - Diliman, Institute of Mathematics, Quezon City, 1101, Philippines

ARTICLE INFO

Article history: Received 10 November 2011 Accepted after revision 29 October 2012 Available online 7 November 2012

Presented by Yves Meyer

ABSTRACT

We show that functions f in some weighted Sobolev space are completely determined by time-frequency samples $\{f(t_n)\}_{n\in\mathbb{Z}} \cup \{\hat{f}(\lambda_k)\}_{k\in\mathbb{Z}}$ along appropriate slowly increasing sequences $\{t_n\}_{n\in\mathbb{Z}}$ and $\{\lambda_n\}_{n\in\mathbb{Z}}$ tending to $\pm\infty$ as $n \to \pm\infty$.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RÉSUMÉ

Nous démontrons que toute fonction f dans un certain espace de Sobolev avec poids est complètement determinée par un échantillon $\{f(t_n)\}_{n\in\mathbb{Z}} \cup \{\hat{f}(\lambda_k)\}_{k\in\mathbb{Z}}$ sur des convenables suites croissantes $\{t_n\}_{n\in\mathbb{Z}}$ et $\{\lambda_n\}_{n\in\mathbb{Z}}$, tendant vers $\pm\infty$ lentement, quand $n \to \pm\infty$. © 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and notations

If $0 \neq x \in \mathbb{R}^N$ and \hat{x} denote its discrete Fourier transform, then $l(x) \cdot l(\hat{x}) \ge N$, where l(x) denotes the cardinality of $\{k: x_k \neq 0\}$ [3]. Another result of the same essence appears in [9]: if a nonzero function is bandlimited to $[-\Omega, \Omega]$, then there exists an interval of length greater than π/Ω on which the function does not vanish.

Our objective is to extend this form of the uncertainty principle to a weighted Sobolev space. Given functions φ and ψ such that $\varphi(t) \ge t^2$, $\psi(t) \ge t^2$, let $\mathcal{H}_{\varphi,\psi}$ denote the Hilbert space of functions $f \in L^2(\mathbb{R})$ such that

$$\|f\|^{2} = \int_{\mathbb{R}} \left(\left| f(t) \right|^{2} \varphi(t) + \left| \hat{f}(t) \right|^{2} \psi(t) \right) dt < \infty$$

$$\tag{1}$$

where \hat{f} is the Fourier transform of f. First, we show that if $f \in \mathcal{H}_{\varphi,\psi}$ and f and \hat{f} are zero respectively, on slowly increasing sequences $\{t_n\}_{n\in\mathbb{Z}}$ and $\{\lambda_n\}_{n\in\mathbb{Z}}$ tending to $\pm\infty$ as $n \to \pm\infty$, then $f \equiv 0$. We then introduce an equivalent discrete norm on \mathcal{H} , in terms of pointwise time-frequency samples $\{f(t_n)\}_{n\in\mathbb{Z}} \cup \{\hat{f}(\lambda_k)\}_{k\in\mathbb{Z}}$. The Riesz Representation Theorem shows how $f \in \mathcal{H}$ can be reconstructed from these time-frequency samples. A special case of this is a Poisson summation formula on slowly increasing sequences. Finally, we show that the weights $\varphi(t) = t^2 = \psi(t)$ are optimal.

We recall that reconstruction of bandlimited signals f from pointwise samples $\{f(t_n)\}_{n \in \mathbb{Z}}$ has been widely studied [1,2, 4–7].

Notations: Given an increasing sequence $\mathcal{T} = \{t_k\}_{k \in \mathbb{Z}}$ in \mathbb{R} such that $\lim_{n \to \pm \infty} t_n = \pm \infty$, we define the sampling operator $S_{\mathcal{T}}$ by $S_{\mathcal{T}}g = \sum_{k \in \mathbb{Z}} g(t_k) \mathbf{1}_{T_k}$ where $T_k = [\frac{1}{2}(t_{k-1} + t_k), \frac{1}{2}(t_k + t_{k+1})]$. Moreover, given a non-negative function φ on \mathbb{R} , we

E-mail addresses: nestor.acala@gmail.com (N.G. Acala), noli@math.upd.edu.ph (N.N. Reyes).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter $\,\,\odot$ 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences. http://dx.doi.org/10.1016/j.crma.2012.10.028

introduce a measure $D_{\mathcal{T},\varphi}$ of the density of the sequence \mathcal{T} by $D_{\mathcal{T},\varphi} = \sup_{k \in \mathbb{Z}} \int_{T_k} |t - t_k| \cdot \varphi(t) dt$. If $\varphi(t) = |t|^p$, we shall simply write $D_{\mathcal{T},\varphi}$ in place of $D_{\mathcal{T},\varphi}$. We also define a weighted energy $E_{\varphi}(f)$ of a signal f by $E_{\varphi}(f) = \int_{\mathbb{R}} |f(t)|^2 \varphi(t) dt$. Finally, we define the Fourier transform of a function $f \in L^1(\mathbb{R})$ by $\hat{f}(w) = (2\pi)^{-1/2} \int_{\mathbb{R}} f(t) e^{-iwt} dt$.

2. Time-frequency zeros of functions in $\mathcal{H}_{\varphi,\psi}$

In this note, $\mathcal{T} = \{t_k\}_{k \in \mathbb{Z}}$ and $\Lambda = \{\lambda_k\}_{k \in \mathbb{Z}}$ will always denote increasing sequences of real numbers such that $\lim_{n\to\pm\infty} t_n = \pm \infty = \lim_{n\to\pm\infty} \lambda_n$. Also, φ and ψ will always denote functions defined on \mathbb{R} satisfying $\varphi(t) \ge t^2$ and $\psi(t) \ge t^2$, for $t \in \mathbb{R}$. Recall the Hilbert space $\mathcal{H}_{\varphi,\psi}$ defined in (1).

We begin with a basic estimate with the sampling operator S_{T} .

Lemma 2.1. Let $f \in \mathcal{H}_{\omega,\psi}$. Then $E_{\omega}(f - S_{\mathcal{T}}f) \leq D_{\mathcal{T},\omega} \|f'\|_{2}^{2}$.

Proof. Given $t \in T_k$, $|f(t) - f(t_k)|^2 \leq |t - t_k| \int_{T_k} |f'(s)|^2 ds$. Combining this with the identity $E_{\varphi}(f - S_{\mathcal{T}}(f)) = C_{\varphi}(f)$ $\sum_{n \in \mathbb{Z}} \int_{T_n} |f(t) - f(t_n)|^2 \varphi(t) \, dt$, yields the conclusion. \Box

The next theorem is the main result of this section.

Theorem 2.2. Let $f \in \mathcal{H}_{\varphi,\psi}$ such that $f(t_k) = 0 = \hat{f}(\lambda_k)$ for each $k \in \mathbb{Z}$. If $D_{\mathcal{T},\varphi} \cdot D_{\Lambda,\psi} < 1$, then $f \equiv 0$.

Proof. Lemma 2.1 implies $E_{\varphi}(f) \leq D_{\mathcal{T},\varphi} \|f'\|_2^2$ and $E_{\psi}(\hat{f}) \leq D_{\Lambda,\psi} \|\hat{f}'\|_2^2$. Combining this with $\|f'\|_2^2 = \int_{\mathbb{R}} |\xi \hat{f}(\xi)|^2 d\xi \leq |f|^2$ $E_{\psi}(\hat{f})$, yields $E_{\varphi}(f) \leq D_{\mathcal{T},\varphi} \cdot D_{\Lambda,\psi} \|\hat{f}'\|_2^2$. In view of $\|\hat{f}'\|_2^2 = \int_{\mathbb{R}} |tf(t)|^2 dt \leq E_{\varphi}(f)$, we see that $E_{\varphi}(f) \leq D_{\mathcal{T},\varphi} \cdot D_{\Lambda,\psi} \cdot E_{\varphi}(f)$. If $f \neq 0$, then $1 \leq D_{\mathcal{T},\varphi} \cdot D_{\Lambda,\psi}$, a contradiction. \Box

Example 2.3. For each $n \in \mathbb{Z}$, define $t_{\pm n} = \pm \ln(|n| + 1)$. Let $\mathcal{T} = \{t_k\}_{k \in \mathbb{Z}}$. Then for any p > 0, $D_{\mathcal{T}, p} < \infty$.

Example 2.4. Let α and p be positive numbers such that $\alpha(p+2) < 2$. Let $t_{\pm n} = \pm |n|^{\alpha}$ for $n \in \mathbb{Z}$. Let $\mathcal{T} = \{t_k\}_{k \in \mathbb{Z}}$. Then $D_{\mathcal{T},p} < \infty$.

Remark 2.5. Let $\{t_n\}_{n\in\mathbb{Z}}$ be any increasing sequence such that $\lim_{n\to\pm\infty}t_n = \pm\infty$. Let $\mathcal{T} = \{t_k\}_{k\in\mathbb{Z}}$ and $\mathcal{T}_{\varepsilon} = \{\varepsilon t_k\}_{k\in\mathbb{Z}}$. Then $D_{\mathcal{T}_{\varepsilon},p} = \varepsilon^{2+p} D_{\mathcal{T},p}$ for any p > 0.

3. Equivalent discrete norms on $\mathcal{H}_{\varphi,\psi}$

Our main result, Theorem 3.3, gives equivalent norms on the Hilbert space $\mathcal{H}_{\varphi,\psi}$. First, we state the following lemma, omitting its proof:

Lemma 3.1. Given measurable functions $f, g : \mathbb{R} \to \mathbb{C}, \frac{1}{2}E_{\varphi}(f-g) \leq E_{\varphi}(f) + E_{\varphi}(g)$.

Proposition 3.2. Suppose φ is even and $t_{-k} = -t_k$ for each $k \in \mathbb{Z}$. Let $f \in \mathcal{H}_{\varphi,\psi}$. With $C_0 = 1 - 4D_{\mathcal{T},\varphi}D_{A,\psi}$, we have

$$C_{0} \cdot E_{\varphi}(f) \leq 4D_{\mathcal{T},\varphi} \cdot E_{\psi}(S_{\Lambda}\hat{f}) + 2E_{\varphi}(S_{\mathcal{T}}f),$$

$$C_{0} \cdot E_{\psi}(\hat{f}) \leq 4D_{\Lambda,\psi} \cdot E_{\varphi}(S_{\mathcal{T}}f) + 2E_{\psi}(S_{\Lambda}\hat{f}).$$
(2)
(3)

$$C_0 \cdot E_{\psi}(\hat{f}) \leq 4D_{A,\psi} \cdot E_{\psi}(S_{\mathcal{T}}f) + 2E_{\psi}(S_{A}\hat{f}).$$
⁽³⁾

Proof. From $||f'||_2^2 \leq E_{\psi}(\hat{f})$, we obtain $E_{\varphi}(f) \leq 2D_{\mathcal{T},\varphi}E_{\psi}(\hat{f}) + 2E_{\varphi}(S_{\mathcal{T}}f)$ in view of Lemmas 2.1 and 3.1. Replacing $(f, \varphi, \psi, \mathcal{T})$ by $(\hat{f}, \psi, \varphi, \Lambda)$ in this inequality and noting that the Fourier transform of \hat{f} is the function $\tilde{f}(x) = f(-x)$ yields $E_{\psi}(\hat{f}) \leq 2D_{\Lambda,\psi}E_{\varphi}(\tilde{f}) + 2E_{\psi}(S_{\Lambda}\hat{f})$. Since φ is even, $E_{\varphi}(\tilde{f}) = E_{\varphi}(f)$. Thus, combining the last two inequalities gives the estimate (2).

Now, the assumptions that φ is even and $t_{-k} = -t_k$ imply $E_{\varphi}(S_{\mathcal{T}}\tilde{f}) = E_{\varphi}(S_{\mathcal{T}}f)$. Thus, applying (2) with $(f, \varphi, \psi, \mathcal{T}, \Lambda)$ replaced by $(\hat{f}, \psi, \varphi, \Lambda, \mathcal{T})$ yields (3). \Box

We come to our main theorem.

Theorem 3.3. Suppose φ is even and $t_{-k} = -t_k$ if $k \in \mathbb{Z}$. Let $4D_{\mathcal{T},\varphi}D_{\Lambda,\psi} < 1$ and $f \in \mathcal{H}_{\varphi,\psi}$. Then

 $C_1 ||f||_{+}^2 \leq ||f||^2 \leq C_2 ||f||_{+}^2$

(4)

where $\|\cdot\|^2$ is defined in (1), $\|f\|^2_{\star} = \sum_{k \in \mathbb{Z}} (|f(t_k)|^2 \int_{T_k} \varphi(t) dt + |\hat{f}(\lambda_k)|^2 \int_{\Lambda_k} \psi(t) dt)$, $C_1 = (2 + 2\max\{D_{\Lambda,\psi}, D_{\mathcal{T},\varphi}\})^{-1}$, and $C_2 = (2 + 4\max\{D_{\Lambda,\psi}, D_{\mathcal{T},\varphi}\})(1 - 4D_{\mathcal{T},\varphi}D_{\Lambda,\psi})^{-1}$.

Proof. Adding (2) and (3) gives $||f||^2 \leq C_2 ||f||^2_{\star}$. By Lemmas 2.1 and 3.1 and the bound, $||f'||^2_2 \leq E_{\psi}(\hat{f})$, we get $E_{\varphi}(S_{\mathcal{T}}f) \leq 2D_{\mathcal{T},\varphi}E_{\psi}(\hat{f}) + 2E_{\varphi}(f)$. Since φ is even, we likewise obtain $E_{\psi}(S_A\hat{f}) \leq 2D_{A,\psi}E_{\varphi}(f) + 2E_{\psi}(\hat{f})$. Adding these last two inequalities gives $C_1 ||f||^2_{\star} \leq ||f||^2$. \Box

4. Time-frequency expansions and a Poisson summation formula

An application of Theorem 3.3 gives an expansion of $f \in \mathcal{H}_{\varphi,\psi}$ in terms of time-frequency samples $\{f(t_n)\}_{n\in\mathbb{Z}} \cup \{\hat{f}(\lambda_k)\}_{k\in\mathbb{Z}}$.

Corollary 4.1. Let $4D_{\mathcal{T},\varphi}D_{\Lambda,\psi} < 1$. Suppose φ is even and $t_{-k} = -t_k$ for each $k \in \mathbb{Z}$.

(a) Given $x \in \mathbb{R}$, there exists $\Phi_x \in \mathcal{H}_{\varphi,\psi}$ such that for each $f \in \mathcal{H}_{\varphi,\psi}$,

$$f(x) = \sum_{k \in \mathbb{Z}} \left(f(t_k) \overline{\Phi_x(t_k)} \int_{T_k} \varphi(t) \, \mathrm{d}t + \hat{f}(\lambda_k) \overline{\widehat{\Phi_x(\lambda_k)}} \int_{\Lambda_k} \psi(t) \, \mathrm{d}t \right).$$
(5)

(b) For $k \in \mathbb{Z}$, set $a_k = \overline{\Phi_0(t_k)} \int_{T_k} \varphi(t) dt$ and $b_k = \overline{\widehat{\Phi_0}(\lambda_k)} \int_{\Lambda_k} \psi(t) dt$. Then

$$f(0) = \sum_{k \in \mathbb{Z}} \left(a_k f(t_k) + b_k \hat{f}(\lambda_k) \right), \quad \text{if } f \in \mathcal{H}_{\varphi, \psi}.$$
(6)

Proof. Let $x \in \mathbb{R}$. Then the mapping $f \mapsto f(x)$ defines a bounded linear functional on $\mathcal{H}_{\varphi,\psi}$. Note that the inner product

$$\langle f, g \rangle_{\star} = \sum_{k \in \mathbb{Z}} \left(f(t_k) \overline{g(t_k)} \int_{T_k} \varphi(t) \, \mathrm{d}t + \hat{f}(\lambda_k) \overline{\hat{g}(\lambda_k)} \int_{A_k} \psi(t) \, \mathrm{d}t \right)$$

induces the equivalent norm $\|\cdot\|_{\star}$ on the Hilbert space $\mathcal{H}_{\varphi,\psi}$, by Theorem 3.3. Thus, the Riesz Representation Theorem implies the existence of $\Phi_x \in \mathcal{H}_{\varphi,\psi}$ such that $f(x) = \langle f, \Phi_x \rangle_{\star}$ for each $f \in \mathcal{H}_{\varphi,\psi}$. This is the desired conclusion (5). Part (b) is obtained by taking x = 0 in (5). \Box

5. Optimality of the weight t^2

Y

We end this note with Example 5.2, showing optimality of the weights $\varphi(t) = t^2 = \psi(t)$.

Lemma 5.1. Let $H(x) = e^{-|x|}$, $T(x) = \cos(\alpha x^2)$, and set $f = H \star T$. Then

(a) *f* has a zero on the interval $[\operatorname{sqn} k \sqrt{\frac{|k|\pi}{\alpha}}, \operatorname{sgn} k \sqrt{\frac{|k+1|\pi}{\alpha}}]$ for each $k \in \mathbb{Z}$, with $\operatorname{sgn} 0 = 1$,

(b) \hat{f} is zero at sgn $k\sqrt{\alpha\pi(4|k|-1)}$ for each $k \in \mathbb{Z} \setminus \{0\}$.

Proof. Set $x_l = \operatorname{sgn} l \sqrt{\frac{|l|\pi}{\alpha}}$ for $l \in \mathbb{Z}$. Fix $k \in \mathbb{Z}$. We claim that $(-1)^k f(x_k) > 0$.

We shall only prove the case when $k \ge 0$, which we now assume. Let $l \ge k$ such that l - k is even. Integration by parts gives

$$\int_{x_{l}}^{x_{l+2}} \cos(\alpha x^{2}) \exp\{-(x-x_{k})\} dx = R_{l} \exp\{-(x_{l+2}-x_{k})\} + S_{l} \quad \text{with}$$
(7)

$$4\sqrt{\alpha}R_l = \int_{l_{\pi}}^{(l+1)\pi} \left\{ x^{-3/2} - (x+\pi)^{-3/2} \right\} \sin x \, \mathrm{d}x,\tag{8}$$

$$4\alpha S_{l} = \int_{l\pi}^{(l+1)\pi} (G(y) - G(y+\pi)) \sin y \, dy,$$
(9)

$$G(y) = y^{-1/2}g(y) + \frac{1}{2}y^{-3/2} \int_{y}^{(l+2)\pi} g(t) dt \text{ and } g(t) = t^{-1/2} \exp\left\{-\left(\sqrt{\frac{t}{\alpha}} - x_k\right)\right\}.$$

In view of (8), $(-1)^k R_l = (-1)^l R_l > 0$. On the other hand, since g is a non-negative decreasing function on $[k\pi, \infty]$, the same is true of *G*. Thus, (9) shows that $(-1)^k S_l = (-1)^l S_l > 0$. Summing (7), we conclude that $(-1)^k \int_{x_k}^{\infty} \cos(\alpha x^2) \exp(-|x - x_k|) dx > 0$. Likewise, we have

$$(-1)^k \int_{-\infty}^{x_k} \cos(\alpha x^2) \exp(-|x-x_k|) \,\mathrm{d}x > 0.$$

Adding these yields $(-1)^k f(x_k) > 0$.

To prove (b), recall that $2\sqrt{2\alpha}\int_0^\infty \cos(\alpha x^2)\cos(tx) dx = \sqrt{\pi}[\cos(\frac{t^2}{4\alpha}) + \sin(\frac{t^2}{4\alpha})]$. (See [8].) Thus, $\sqrt{2\alpha}\hat{T}(w) = \sin(\frac{w^2}{4\alpha} + \frac{\pi}{4})$. Part (b) follows from this since $\hat{f} = \hat{H} \cdot \hat{T}$. \Box

Recall that if $\varphi(t) = |t|^p$, we write $D_{\mathcal{T},p}$ in place of $D_{\mathcal{T},\varphi}$.

Example 5.2. Given $p \in [1, 2[$, there exist increasing sequences $\mathcal{T} = \{t_k\}_{k \in \mathbb{Z}}$ and $\Lambda = \{\lambda_k\}_{k \in \mathbb{Z}}$ such that $\lim_{n \to \pm\infty} t_n = t_n$ $\pm \infty = \lim_{n \to \pm \infty} \lambda_n$ and $D_{\mathcal{T},p} D_{\Lambda,2} < 1$, but $f(t_k) = 0 = \hat{f}(\lambda_k)$, $\forall k \in \mathbb{Z}$, for some nonzero $f \in L^2(\mathbb{R})$ with $\int_{\mathbb{R}} (|f(x)|^2 + i \lambda_k) dx$ $|\hat{f}(x)|^2 x^2 \,\mathrm{d}x < \infty.$

Proof. Let $p \in [1, 2]$ and choose $\alpha > 0$ such that $25\pi^2(2\pi)^{1+\frac{p}{2}}\alpha^{1-\frac{p}{2}} < 1$. As in Lemma 5.1, we define $f = H \star T$. Recall that $\sqrt{\pi}\hat{H}(w) = \sqrt{2}(1+w^2)^{-1} \text{ and } \sqrt{2\alpha}\hat{T}(w) = \sin(\frac{w^2}{4\alpha} + \frac{\pi}{4}). \text{ Thus, } \hat{f}(w) = (\pi\alpha)^{-1/2}(1+w^2)^{-1}\sin(\frac{w^2}{4\alpha} + \frac{\pi}{4}). \text{ It follows that } \int_{\mathbb{R}} |\hat{f}(w)|^2 |w|^2 \, \mathrm{d}w < \infty \text{ and } \int_{\mathbb{R}} |f(x)|^2 x^2 \, \mathrm{d}x = \int_{\mathbb{R}} |\hat{f}'(w)|^2 \, \mathrm{d}w < \infty.$

For $k \in \mathbb{Z}$, f has a zero t_k in the interval $[\operatorname{sqn} k\sqrt{\frac{|k|\pi}{\alpha}}, \operatorname{sgn} k\sqrt{\frac{|k+1|\pi}{\alpha}}]$, by Lemma 5.1. If $k \ge 1$ or $k \le -2$, $\int_{T_k} |t - t_k| \cdot |t|^p \, dt \le \frac{1}{4} \cdot (\frac{3\pi}{\alpha})^{1+\frac{p}{2}}$. While for $k \in \{0, -1\}$, $\int_{T_k} |t - t_k| \cdot |t|^p \, dt \le (\frac{2\pi}{\alpha})^{1+\frac{p}{2}}$. Taking the larger of these yields $D_{\mathcal{T},p} \le (\frac{2\pi}{\alpha})^{1+\frac{p}{2}}$ with $\mathcal{T} = \{t_k\}_{k \in \mathbb{Z}}.$

On the other hand, define $\lambda_k = \sqrt{\alpha \pi (4k-1)}$ if $k \ge 1$ and $\lambda_k = -\sqrt{\alpha \pi (4|k-1|-1)}$ if $k \le 0$. By Lemma 5.1, $\hat{f}(\lambda_k) = 0$ for each $k \in \mathbb{Z}$. Set $\Lambda_k = [\frac{1}{2}(\lambda_{k-1} + \lambda_k), \frac{1}{2}(\lambda_k + \lambda_{k+1})]$. We have $\int_{\Lambda_k} |\lambda - \lambda_k| \cdot \lambda^2 d\lambda \le 16(\alpha \pi)^2$ for $k \ge 2$ or $k \le -1$. On the other hand, if $k \in \{0, 1\}, \int_{\Lambda_k} |\lambda - \lambda_k| \cdot \lambda^2 d\lambda \le 25(\alpha \pi)^2$. Taking the larger of these yields $D_{\Lambda,2} \le 25(\alpha \pi)^2$ where $\Lambda = \{\lambda_k\}_{k \in \mathbb{Z}}$. Finally, we conclude that $D_{\mathcal{T},p}D_{\Lambda,2} \leq 25\pi^2 (2\pi)^{1+\frac{p}{2}} \alpha^{1-\frac{p}{2}} < 1.$

References

- [1] A. Aldroubi, K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001) 585-620.
- [2] P.L. Butzer, P.J.S.G. Ferreira, J.R. Higgins, S. Saitoh, G. Schmeisser, R.L. Stens, Interpolation and sampling: E.T. Whittaker, K. Ogura and their followers, J. Fourier Anal. Appl. 17 (2010) 320-354.
- [3] D.L. Donoho, P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1990) 906-931.
- [4] H.G. Feichtinger, K. Gröchenig, Theory and practice of irregular sampling, in: Wavelets: Mathematics and Applications, in: Stud. Adv. Math., CRC, Boca Raton, 1994, pp. 305-363.
- [5] K. Gröchenig, Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type, Math. Comp. 68 (1999) 749-765.
- [6] V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.
- [7] Y. Meyer, Ondelettes et Opérateurs, Hermann, Paris, 1990.
- [8] E. Talvila, Rapidly growing Fourier integrals, Amer. Math. Month. 108 (2001) 636-641.
- [9] W.J. Walker, Zeros of the Fourier transform of a distribution, J. Math. Anal. Appl. 154 (1989) 77-91.