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Let N be the set of all nonnegative integers. For a set A ⊆N, let R(A,n) denote the number
of solutions (a,a′) of a +a′ = n with a,a′ ∈ A. The well known Erdős–Turán conjecture says
that if R(A,n) � 1 for all integers n � 0, then R(A,n) is unbounded. In this Note, the
following result is proved: There is a set A ⊆ N such that R(A,n) � 1 for all integers n � 0
and the set of n with R(A,n) = 2 has density one.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit N l’ensemble des entiers positifs ou nul. Pour un sous-ensemble A ⊂ N nous notons
R(A,n) le nombre de solutions (a,a′) ∈ A2 de a + a′ = n. La célèbre conjecture d’Erdös–
Turán affirme que si R(A,n) � 1 pour tout entier n � 0, alors R(A,n) n’est pas borné.
Nous montrons dans cette Note qu’il existe un sous-ensemble A ⊂ N tel que R(A,n) � 1
pour tout entier n � 0 et tel que l’ensemble des n satisfaisant R(A,n) = 2 soit de densité
un.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let N be the set of all nonnegative integers. For a set A ⊆ N, let R(A,n) denote the number of solutions (a,a′) of
a + a′ = n with a,a′ ∈ A. If R(A,n) � 1 for all n ∈ N, then A is called a basis of N. The well known Erdős–Turán conjecture
[4] says that if A is a basis of N, then R(A,n) is unbounded. Grekos, Haddad, Helou, and Pihko [5] proved that if A is a basis
of N, then R(A,n) � 6 for infinitely many positive integers n. Borwein, Choi, and Chu [1] improved 6 to 8. Nathanson [8]
proved that the Erdős–Turán conjecture does not hold in Z. For a set A ⊆ Zm , let Rm(A,n) denote the number of solutions
(a,a′) of a +a′ = n with a,a′ ∈ A. Developing Ruzsa’s method [9], Tang and Chen [11] proved that for every sufficiently large
integer m, there exists A ⊆ Zm such that 1 � Rm(A,n) � 768 for all n ∈ Zm . In 2008, Chen [2] proved that for every positive
integer m, there exists A ⊆ Zm such that 1 � Rm(A,n) � 288 for all n ∈ Zm . In 1990, Ruzsa [9] found a subset A of N for
which R(A,n) � 1 for all integers n � 0 and R(A,n) is bounded in the square mean. Tang [10] gave a quantitative version
of Ruzsa’s theorem. Recently, the author and Yang [3] gave a new proof of Ruzsa’s theorem.

In this Note, the following result is proved:

Theorem 1. There is a basis A of N such that the set of n with R(A,n) = 2 has density one.
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2. Proofs

Lemma 1. (See [7, Lemma 2].) Let w1, . . . , ws be s distinct nonnegative integers. If

s∑
i=1

2wi =
t∑

j=1

2x j

where x1, . . . , xt are nonnegative integers that are not necessarily distinct, then there is a partition of {1,2, . . . , t} into s nonempty
sets J1, . . . , J s such that

2wi =
∑
j∈ J i

2x j

for i = 1, . . . , s.

Lemma 2. Let w be a nonnegative integer, and let I and J be two finite sets of nonnegative integers such that the integers in I ∪ J
have the same parity. If

2w =
∑
i∈I

2i +
∑
j∈ J

2 j, (1)

then either I ∪ J = {w} or I = J = {w − 1}.

Proof. If I = ∅ or J = ∅, then the conclusion is clear by the uniqueness of the binary representation. We now assume that
I �= ∅ and J �= ∅. Let i1 and j1 be the least integers in I and J respectively. If i1 �= j1, say i1 < j1, then by (1) we have

−2i1 =
∑

i∈I\{i1}
2i +

∑
j∈ J

2 j − 2w . (2)

The right-hand side of (2) is divisible by 2i1+1, a contradiction. So i1 = j1. Thus

2w − 2i1+1 =
∑

i∈I\{i1}
2i +

∑
j∈ J\{ j1}

2 j . (3)

Suppose that w > i1 + 1. Since the integers in I ∪ J have the same parity, the right-hand side of (3) is divisible by 2i1+2.
But the left-hand side of (3) is not divisible by 2i1+2, a contradiction. Hence w = i1 + 1. Thus I = {i1} = {w − 1} and
J = { j1} = {w − 1}. �

Let P be a possible property of a positive integer, and P (x) the number of positive integers less than x with the property
P . If P (x)/x → 1 as x → ∞, we say that almost all positive integers possess the property P .

Lemma 3. (See [6, Theorem 143].) Almost all positive integers, when expressed in any scale, contain a given possible sequence of digits.

Proof of Theorem 1. Let

A =
{ ∞∑

i=0

εi2
2i: εi ∈ {0,1}

}
∪

{ ∞∑
i=1

εi2
2i−1: εi ∈ {0,1}

}
,

where in each sum there are only finitely many εi = 1. Since each positive integer has its binary representation and 0 ∈ A,
it follows that R(A,n) � 1 for all integers n � 0. We say that a positive integer n has the property P if n contains a
sequence 111 in its binary representation. By Lemma 3, almost all positive integers have the property P . In order to prove
Theorem 1, it is enough to prove that R(A,n) = 2 for all n with the property P .

Let n = ∑
i∈I 2i be a positive integer with the property P . We treat the case where {2k,2k + 1,2k + 2} ⊆ I , for a certain

k � 0. The case where {2k + 1,2k + 2,2k + 3} ⊆ I , for a certain k � 0, can be treated similarly.
Let n = a′ + a′′ with a′,a′′ ∈ A. It is clear that a′ �= 0 and a′′ �= 0.
We suppose that

a′ =
∑
i∈I ′

22i, a′′ =
∑
i∈I ′′

22i

and we shall obtain a contradiction.
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By Lemma 1, there are two disjoint subsets I ′1, I ′2 of I ′ and two disjoint subsets I ′′1, I ′′2 of I ′′ (possibly I ′j = ∅ and I ′′j = ∅,
j = 1 or 2) such that

22k =
∑
i∈I ′1

22i +
∑
i∈I ′′1

22i

and

22k+1 =
∑
i∈I ′2

22i +
∑
i∈I ′′2

22i .

By Lemma 2 we have I ′1 ∪ I ′′1 = I ′2 = I ′′2 = {k}. This contradicts the fact that I ′1 ∩ I ′2 = ∅ and I ′′1 ∩ I ′′2 = ∅.
Similarly, we can derive a contradiction (using 2k + 1 and 2k + 2) if

a′ =
∑
i∈I ′

22i+1, a′′ =
∑
i∈I ′′

22i+1.

By the uniqueness of the binary representation and the definition of A, we have that either

a′ =
∑

i∈I,2|i
2i, a′′ =

∑
i∈I,2�i

2i

or

a′′ =
∑

i∈I,2|i
2i, a′ =

∑
i∈I,2�i

2i .

Therefore, R(A,n) = 2. �
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