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We address the problem of parameter estimation of long memory time series. We con-
sider k-factors Gegenbauer Autoregressive Moving Average (k-GARMA) processes and we
estimate their parameters by the minimum Hellinger distance estimator. We establish the
consistency of the estimator and the asymptotic normality for some bandwidth choice.
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r é s u m é

Nous étudions le problème d’estimation dans les séries temporelles fortement dépendantes.
Nous considérons les processus Gegenbaeur autorégressifs à moyenne mobile (GARMA)
à k facteurs pour les modéliser et nous estimons leurs paramètres par la méthode du
minimum de distance de Hellinger. Nous établissons la consistance de l’estimateur et la
normalité asymptotique pour un certain choix de fenêtre de lissage.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider a more general class of long memory models for time series, the k-factor GARMA model. First introduced
by Gray et al. [3], these processes have the ability in providing a good characterization of both cyclical and long memory
behavior of many time series.

Definition 1. The process (Xt)t∈Z is a k-factor GARMA process if it can be written as:

φ(B)

k∏
i=1

(
I − 2νi B + B2)di

(Xt − μ) = θ(B)εt (1)

where k is an integer, εt is a white noise sequence with variance σ 2 such that E(ε4
t ) � ∞, μ is the mean of the pro-

cess, |νi | � 1 for i = 1, . . . ,k, di is a long-memory parameter and φ(B) and θ(B) are autoregressive and moving average
polynomials of degrees p and q respectively.

For i = 1, . . . ,k, λi = cos−1(νi) are the Gegenbauer frequencies or G-frequencies. For the sake of simplicity and without
loss of generality, in the remainder of the paper we assume that μ = 0.
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An estimation procedure for the parameters is proposed in this paper. For the parametric estimation approach, we
refer to Kouamé and Hili [6], and the references therein. The estimator introduced here belongs to the Minimum Hellinger
Distance (MHD) class. This type of estimator was first introduced by Beran [1] for independent series and was studied by
some authors such as Hili [4] for dependent series under mixing conditions.

Relative to other time domain approaches, such as maximum likelihood estimation, it presents the additional advantage
that it is not necessary to specify a particular distribution for the innovation process. Also, it is robust (see Beran [1], Hili
[4,5]).

The invertibility and stationarity conditions are established and proved by Woodward et al. [8] and Giraitis and Leipus [2].
Let ψ = (d, ν,φ, θ) ∈ Ψ ⊂ R2k+p+q be the vector of parameters of interest where Ψ is a compact set and ψ0 the vector of

the true values. Let now consider a stationary and invertible k-factor GARMA process Xt and fψ be the probability density

of that process. Let f̂n be a nonparametric density estimate computed from X1, . . . , Xn . It is obtained by using the kernel
density estimator

f̂n(u) = 1

nh

n∑
t=1

K

(
u − Xt

h

)
(2)

where h = hn is a sequence of bandwidths (h → 0, nh → ∞) and K a kernel function.
Then we define ψ̂n as the value of ψ ∈ Ψ which minimizes the Hellinger distance between f̂n and fψ ; that is,

ψ̂n = arg min
ψ∈Ψ

H2( f̂n, fψ) (3)

where

H2( f̂n, fψ) =
(∫

�

∣∣ f̂
1
2

n (u) − f
1
2
ψ (u)

∣∣2
du

) 1
2

2. Hypothesis and asymptotic properties

To establish the asymptotic properties of ψ̂n , we need some assumptions:

(C1) ψ1 �= ψ2 implies fψ1 �= fψ2 on a set of positive Lebesgue measure.

(C2)

{
(i) fψ(.) is uniformly continuous and 2 times continuously differentiable (r � 2);

(ii) supx∈R | ∂
∂x fψ(x)| < +∞.

(C3)

{
(i) K (.) is a bounded positive density function;

(ii) ∃N1 > 0 supu |K (u + v) − K (u)| � N1|v| for all v ∈ R.

(C4)
∫
R

K (u)du = 1,
∫
R

uK (u)du = 0 and
∫
R

|u|2|K (u)| du < +∞.

(C5) E(|εt |4) < +∞.

Proposition 1. Under assumptions (C2)–(C5), if the distribution function of εt is differentiable with bounded, continuous and inte-
grable derivatives then, f̂n(u) almost surely converges to fψ(u) for all u ∈R as n → ∞.

Sketch of proof. Let d = max(di) for i = 1, . . . ,k and h = n−δ , 0 < δ < (1 − 2d) ∧ 1/2.
Then, for λ < δ ∧ [((1 − 2d) ∧ 1/2) − δ], we show that

nλ sup
u∈R

∣∣ f̂n(u) − fψ(u)
∣∣ → 0 a.s., n → ∞ (4)

Theorem 1 (Consistency). Let ψ0 the true value of the parameter ψ be an interior point of the compact set Ψ . Then, under assumptions
of Proposition 1, ψ̂n converges a.s. to ψ0 as n → ∞.

Sketch of proof. Let denote F the set of all densities with respect to the Lebesgue measure on R. Define the functional
T :F → Ψ in the following:

Let g ∈F . Denote

A(g) =
{
ψ ∈ Ψ : H2(g, fψ) = min

θ∈Ψ
H2(g, fθ )

}
(5)

where H2 is the Hellinger distance. If A(g) is reduced to a unique element, then define T (g) as the value of this element.
Elsewhere we choose an arbitrary but unique element of these minimums and call it T (g).
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Table 1
Results of Monte Carlo simulations for performance of MDH estimator.

d0 B(d̂) RMSE(d̂)

T = 300
−0.2 −0.005 0.0104

0.4 0.0188 0.0334

From Proposition 1 H2( f̂n, fψ) = (
∫
� | f̂

1
2

n (u) − f
1
2

ψ (u)|2 du)
1
2 → 0 a.s. when n → ∞. And from the continuity of the

functional T , we deduce that ψ̂n = T ( f̂n) → T ( fψ0 ) = ψ0 a.s., n → ∞.
In the following, we discuss the asymptotic distribution of the kernel estimate.

Proposition 2. Assume that f1 the probability density function of εt is Lipschitz and three times differentiable with bounded, con-
tinuous and integrable derivatives. Under conditions (C2), (C4) and (C5); let assume that h = Cnα where C > 0 is a constant and
−1 < α < 0. Then if α < 2d,

(nh)
1
2
[

f̂n(x) − fψ(x)
] ⇒ N

[
0, fψ(x)

∫
R

K 2(s)ds

]
(6)

Sketch of proof. We derive this proposition from Theorem 2 and Corollary 1 of Wu and Mielniczuk [9].

First we prove that nh√
nh

[ f̂n(x) − E f̂n(x)] = Mn√
nh

+ op(1) where for h → 0 and nh → +∞, (nh)− 1
2 Mn ⇒ N(0, σ 2(x)) with

σ 2(x) = fψ(x)
∫

K 2(s)ds.

Then we show that nh√
nh

[E f̂n(x) − fψ(x)] → 0, n → ∞; which yield Proposition 2.

Theorem 2 (Asymptotic distribution). Assuming that conditions of Propositions 1 and 2 are satisfied, then the limiting distribution of
n1/2(ψ̂n − ψ) is N(0,Σ2) where

Σ2 = 1

4

[∫
ġψ(x)ġ′

ψ(x)

]−1 ∫
K 2(u)du (7)

where gψ = f 1/2
ψ ; ġψ = ∂ gψ

∂ψ
and ( ′ ) the transpose.

Sketch of proof. From Theorem 2 in Beran [1], the limit law of (ψ̂n −ψ), is that of
∫

Vψ(u)[ f̂
1
2

n (u)− f
1
2

ψ (u)]du; where Vψ(u) =
[∫ ġψ(u)ġ′

ψ(u)du]−1 ġψ(u).

By using the following algebraic identity from fψ > 0: f̂ 1/2
n − f 1/2

ψ = f̂n− fψ

2 f 1/2
ψ

− ( f̂n− fψ )2

2 f 1/2
ψ ( f̂ 1/2

n + f 1/2
ψ )2

and Proposition 1, we have

now to determine the limit law of: n1/2
∫ Vψ (u)

2 f 1/2
ψ (u)

[ f̂n(u) − fψ(u)]du.

From Proposition 2, this limit law is N(0,Σ2) where: Σ2 = 1
4

∫
Vψ(u)(Vψ(u))′ du

∫
K 2(s)ds. Which proves Theorem 2.

3. Numerical simulations

In this section we did some numerical simulations for minimum Hellinger distance estimator (MDH) to show its
performance. We generate two long memory processes, GARMA(0,d, ν,0), stationary and invertible for ν = 0.8 and
d ∈ {−0.2,0.4}, the process (εt ∼ N(0, σε)) where σ 2

ε = 1.
We choose sample length T = 300. For each model we make 100 independent replications. Now, notice that the model

density fψ analytical expression is intractable. So following the method of Takada [7], we will replaced the density fψ by
the nonparametric estimator f̃ ∗

ψ,n defined as follows:

Let ( X̃ s
1(ψ), . . . , X̃ s

n(ψ)) be the s-th replication of the simulated sequence from the model GARMA, s = 1, . . . , S . That is
the simulated sequence has length S × T (choose here S = 100)

f̃ ∗
ψ,n(u) = 1

S

S∑
s=1

[
1

nh

n∑
t=1

K

(
u − X̃ s

t (ψ)

h

)]

We estimate only parameter d assuming ν = 0.8 known. We calculate the bias and the root mean square error (RMSE).
Results are in Table 1.
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