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r é s u m é

Dans cette note on étudie les solutions des équations généralisées de Sylvester K X −
E X F = BY et M F X2 + D X F + K X = BY , on donne des expressions explicites des solutions
de ces équations en utilisant des transformations matricielles et le polynôme minimal de
la matrice F .

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Many control problems, such as pole assignment [2,14,16], and eigenstructure assignment [8,12], can be represented by
the following second-order linear systems

Mẍ(t) + Dẋ(t) + K x(t) = Bu(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the control vector and M , D , K and B are matrices of appropriate dimensions.
In certain applications, the matrices M , D and K are called the mass, damping and stiffness matrices, respectively. It can be
shown that the linear system (1) is closely related with a second-order Sylvester matrix equation and can be written as

M X F 2 + D X F + K X = BY , (2)

where M, D, K ∈ Cn×n, B ∈ Cn×q and F ∈ Cp×p are known matrices, X ∈ Cn×p and Y ∈ Cq×p are the matrices to be de-
termined. When M = 0 and D = −E , the second-order Sylvester matrix equation (2) reduces to the generalized Sylvester
matrix equation

K X − E X F = BY . (3)
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When M = 0, D = −In , B = In , Y = W , the second-order Sylvester matrix equation (2) becomes the normal Sylvester matrix
equation

K X − X F = W . (4)

In addition, by substituting K = −F � in (4), the normal Sylvester matrix equation reduces to the well-known Lyapunov
matrix equation

F � X + X F = −W . (5)

All the equations mentioned above play an important role in various applied problems. Therefore, despite that numerous
algorithms were developed to solve these equations ([3–7,9–11,13,17] etc.), the development of some new algorithms is still
of importance. In this note, a simple method for solving Eq. (2) and Eq. (3) is presented by some matrix transformations
and the minimal polynomial of the matrix F , and the explicit solutions of the equations are provided.

2. Matrix equation K X − E X F = BY

In this section, we discuss the solution of the matrix equation (3). To begin with, we give the following lemma [1]:

Lemma 1. If L ∈ Cm×q, J ∈ Cm×p, then L Z = J has a solution Z ∈ Cq×p if and only if LL+ J = J . In this case, the general solution of
the equation can be described as Z = L+ J + (Iq − L+L)U , where L+ represents the Moore–Penrose generalized inverse of the matrix L,
and U ∈ Cq×p is an arbitrary matrix.

It follows from Lemma 1 that the equation of (3) with unknown matrix Y has a solution if and only if

(
In − B B+)

K X − (
In − B B+)

E X F = 0, (6)

when the condition (6) is satisfied, the general solution to the equation of (3) with unknown matrix Y is given by

Y = B+(K X − E X F ) + (
Iq − B+B

)
T ,

where T ∈ Cq×p is an arbitrary matrix.
Let

P1 = (
In − B B+)

K , Q 1 = (
In − B B+)

E,

then, the equation of (6) is equivalent to

P1 X = Q 1 X F . (7)

Applying the approach in [15], assume that the columns of the matrix [G1, H1]� form the basis of the null space of
[Q �

1 ,−P�
1 ] (the matrices G1, H1 may be found using procedure null.m package MATLAB), then we have

G1 Q 1 = H1 P1. (8)

Using the equality (8), we get

G1 P1 X = G1 Q 1 X F = H1 P1 X F = H1 Q 1 X F 2. (9)

Let

P2 = G1 P1, Q 2 = H1 Q 1, (10)

then the equation of (9) becomes

P2 X = Q 2 X F 2. (11)

Similarly, let the columns of the matrix [G2, H2]� form the basis of the null space of [Q �
2 ,−P�

2 ], that is,

G2 Q 2 = H2 P2. (12)

Using the equality (12), we have

P3 X = Q 3 X F 3,

where P3 = G2 P2, Q 3 = H2 Q 2.
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A similar procedure can be used to construct the relation with higher degrees of the matrix F ,

Pk X = Q k X F k, k = 1,2, . . . , (13)

where Pk = Gk−1 Pk−1, Q k = Hk−1 Q k−1, and the columns of the matrix [Gk−1, Hk−1]� form the basis of the null space of
[Q �

k−1,−P�
k−1], that is,

Gk−1 Q k−1 = Hk−1 Pk−1, k = 2,3, . . . .

It is easily seen that

Pk = Gk−1Gk−2 · · · G2G1 P1, Q k = Hk−1 Hk−2 · · · H2 H1 Q 1. (14)

Assume that the minimal polynomial of the matrix F is

mF (λ) = λl + f1λ
l−1 + · · · + fl−1λ + fl. (15)

Then, by (13), we have

(Pl + f1 Hl−1 Pl−1 + f2 Hl−1 Hl−2 Pl−2 + · · · + fl−1 Hl−1 Hl−2 · · · H2 H1 P1 + fl Q l)X

= Q l X
(

F l + f1 F l−1 + · · · + fl−1 F + fl I p
) = 0.

In summary of the above discussion and using Lemma 1, we have proved the following result:

Theorem 1. Let P1 = (In − B B+)K , Q 1 = (In − B B+)E. Assume that the matrix [Gk−1, Hk−1] is of full row rank and satisfies
Gk−1 Q k−1 = Hk−1 Pk−1 , k = 2,3, . . . , where Pk = Gk−1 Pk−1 , Q k = Hk−1 Q k−1 , k = 2,3, . . . . Let the minimal polynomial of the
matrix F be given by (15). Set D = Pl + f1 Hl−1 Pl−1 + f2 Hl−1 Hl−2 Pl−2 +· · ·+ fl−1 Hl−1 Hl−2 · · · H2 H1 P1 + fl Q l, then the solution
of Eq. (3) can be expressed as

X = (
In − D+D

)
V , (16)

Y = B+[
K

(
In − D+D

)
V − E

(
In − D+D

)
V F

] + (
Iq − B+B

)
T , (17)

where V ∈ Cn×p , T ∈ Cq×p are arbitrary matrices.

3. Matrix equation M X F 2 + D X F + K X = BY

In this section, we study the solution of the matrix equation (2). Using Lemma 1, the equation of (2) with unknown
matrix Y has a solution if and only if

(
In − B B+)(

M X F 2 + D X F + K X
) = 0, (18)

when the condition (18) is satisfied, the general solution to the equation of (2) with unknown matrix Y is given by

Y = B+(
M X F 2 + D X F + K X

) + (
Iq − B+B

)
T ,

where T ∈ Cq×p is an arbitrary matrix.
Let

P̃1 =
[−(In − B B+)K 0

0 (In − B B+)M

]
, Q̃ 1 =

[
(In − B B+)D (In − B B+)M
(In − B B+)M 0

]
, (19)

then, the equation of (18) is equivalent to

P̃1

[
X

X F

]
= Q̃ 1

[
X

X F

]
F . (20)

By a similar approach in Section 2, we have

P̃k

[
X

X F

]
= Q̃ k

[
X

X F

]
F k, (21)

where the matrix [G̃k−1, H̃k−1] is of full row rank and is determined alternately by the following relations:

G̃k−1 Q̃ k−1 = H̃k−1 P̃k−1, k = 2,3, . . . , (22)

P̃k = G̃k−1 P̃k−1, Q̃ k = H̃k−1 Q̃ k−1, k = 2,3, . . . . (23)
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Assume that the minimal polynomial of the matrix F is given by (15). Then, by (21), we have

D̃

[
X

X F

]
= 0, (24)

where D̃ = P̃ l + f1 H̃l−1 P̃ l−1 + f2 H̃l−1 H̃l−2 P̃ l−2 + · · · + fl−1 H̃l−1 H̃l−2 · · · H̃2 H̃1 P̃1 + fl Q̃ l.

Let

D̃ = [P1,−Q 1].
Then the equation of (24) is equivalent to

P1 X = Q 1 X F , (7)

and the solution is given by (16).
By now, we have proved the following result:

Theorem 2. Let P̃1, Q̃ 1 be given by (19). Assume that the matrix [G̃k−1, H̃k−1] is of full row rank and satisfies G̃k−1 Q̃ k−1 = H̃k−1 P̃k−1 ,
k = 2,3, . . . , where P̃k = G̃k−1 P̃k−1 , Q̃ k = H̃k−1 Q̃ k−1 , k = 2,3, . . . . Let the minimal polynomial of the matrix F be given by (15). Set
D̃ = P̃ l + f1 H̃l−1 P̃ l−1 + f2 H̃l−1 H̃l−2 P̃ l−2 + · · · + fl−1 H̃l−1 H̃l−2 · · · H̃2 H̃1 P̃1 + fl Q̃ l and then partition D̃ as D̃ = [P1,−Q 1]. Then
the solution of Eq. (2) can be expressed as

X = (
In − D+D

)
V , (25)

Y = B+[
M

(
In − D+D

)
V F 2 + D

(
In − D+D

)
V F + K

(
In − D+D

)
V

] + (
Iq − B+B

)
T , (26)

where D = Pl + f1 Hl−1 Pl−1 + f2 Hl−1 Hl−2 Pl−2 + · · · + fl−1 Hl−1 Hl−2 · · · H2 H1 P1 + fl Q l , and V ∈ Cn×p , T ∈ Cq×p are arbitrary
matrices.
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