Optimal Control/Numerical Analysis

On solutions of the matrix equations $K X-E X F=B Y$ and $M X F^{2}+D X F+K X=B Y$

Sur les solutions des équations matricielles $K X-E X F=B Y$ et $M X F^{2}+D X F+K X=B Y$

Yongxin Yuan, Jiashang Jiang
School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China

A R T I CLE IN F O

Article history:

Received 16 May 2012
Accepted 9 October 2012
Available online 22 October 2012
Presented by Olivier Pironneau

Abstract

This note studies the solutions of generalized Sylvester equations $K X-E X F=B Y$ and $M X F^{2}+D X F+K X=B Y$, and obtains explicit solutions of the equations by using some matrix transformations and the minimal polynomial of the matrix F. © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Dans cette note on étudie les solutions des équations généralisées de Sylvester $K X$ $E X F=B Y$ et $M F X^{2}+D X F+K X=B Y$, on donne des expressions explicites des solutions de ces équations en utilisant des transformations matricielles et le polynôme minimal de la matrice F.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Many control problems, such as pole assignment [2,14,16], and eigenstructure assignment [8,12], can be represented by the following second-order linear systems

$$
\begin{equation*}
M \ddot{x}(t)+D \dot{x}(t)+K x(t)=B u(t) \tag{1}
\end{equation*}
$$

where $x(t) \in \mathbf{R}^{n}$ is the state vector, $u(t) \in \mathbf{R}^{q}$ is the control vector and M, D, K and B are matrices of appropriate dimensions. In certain applications, the matrices M, D and K are called the mass, damping and stiffness matrices, respectively. It can be shown that the linear system (1) is closely related with a second-order Sylvester matrix equation and can be written as

$$
\begin{equation*}
M X F^{2}+D X F+K X=B Y \tag{2}
\end{equation*}
$$

where $M, D, K \in \mathbf{C}^{n \times n}, B \in \mathbf{C}^{n \times q}$ and $F \in \mathbf{C}^{p \times p}$ are known matrices, $X \in \mathbf{C}^{n \times p}$ and $Y \in \mathbf{C}^{q \times p}$ are the matrices to be determined. When $M=0$ and $D=-E$, the second-order Sylvester matrix equation (2) reduces to the generalized Sylvester matrix equation

$$
\begin{equation*}
K X-E X F=B Y \tag{3}
\end{equation*}
$$

[^0]When $M=0, D=-I_{n}, B=I_{n}, Y=W$, the second-order Sylvester matrix equation (2) becomes the normal Sylvester matrix equation

$$
\begin{equation*}
K X-X F=W \tag{4}
\end{equation*}
$$

In addition, by substituting $K=-F^{\top}$ in (4), the normal Sylvester matrix equation reduces to the well-known Lyapunov matrix equation

$$
\begin{equation*}
F^{\top} X+X F=-W . \tag{5}
\end{equation*}
$$

All the equations mentioned above play an important role in various applied problems. Therefore, despite that numerous algorithms were developed to solve these equations ($[3-7,9-11,13,17]$ etc.), the development of some new algorithms is still of importance. In this note, a simple method for solving Eq. (2) and Eq. (3) is presented by some matrix transformations and the minimal polynomial of the matrix F, and the explicit solutions of the equations are provided.

2. Matrix equation $K X-E X F=B Y$

In this section, we discuss the solution of the matrix equation (3). To begin with, we give the following lemma [1]:
Lemma 1. If $L \in \mathbf{C}^{m \times q}, J \in \mathbf{C}^{m \times p}$, then $L Z=J$ has a solution $Z \in \mathbf{C}^{q \times p}$ if and only if $L L^{+} J=J$. In this case, the general solution of the equation can be described as $Z=L^{+} J+\left(I_{q}-L^{+} L\right) U$, where L^{+}represents the Moore-Penrose generalized inverse of the matrix L, and $U \in \mathbf{C}^{q \times p}$ is an arbitrary matrix.

It follows from Lemma 1 that the equation of (3) with unknown matrix Y has a solution if and only if

$$
\begin{equation*}
\left(I_{n}-B B^{+}\right) K X-\left(I_{n}-B B^{+}\right) E X F=0, \tag{6}
\end{equation*}
$$

when the condition (6) is satisfied, the general solution to the equation of (3) with unknown matrix Y is given by

$$
Y=B^{+}(K X-E X F)+\left(I_{q}-B^{+} B\right) T
$$

where $T \in \mathbf{C}^{q \times p}$ is an arbitrary matrix.
Let

$$
P_{1}=\left(I_{n}-B B^{+}\right) K, \quad Q_{1}=\left(I_{n}-B B^{+}\right) E
$$

then, the equation of (6) is equivalent to

$$
\begin{equation*}
P_{1} X=Q_{1} X F \tag{7}
\end{equation*}
$$

Applying the approach in [15], assume that the columns of the matrix $\left[G_{1}, H_{1}\right]^{\top}$ form the basis of the null space of [$Q_{1}^{\top},-P_{1}^{\top}$] (the matrices G_{1}, H_{1} may be found using procedure null.m package MATLAB), then we have

$$
\begin{equation*}
G_{1} Q_{1}=H_{1} P_{1} . \tag{8}
\end{equation*}
$$

Using the equality (8), we get

$$
\begin{equation*}
G_{1} P_{1} X=G_{1} Q_{1} X F=H_{1} P_{1} X F=H_{1} Q_{1} X F^{2} . \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
P_{2}=G_{1} P_{1}, \quad Q_{2}=H_{1} Q_{1}, \tag{10}
\end{equation*}
$$

then the equation of (9) becomes

$$
\begin{equation*}
P_{2} X=Q_{2} X F^{2} \tag{11}
\end{equation*}
$$

Similarly, let the columns of the matrix $\left[G_{2}, H_{2}\right]^{\top}$ form the basis of the null space of $\left[Q_{2}^{\top},-P_{2}^{\top}\right]$, that is,

$$
\begin{equation*}
G_{2} Q_{2}=H_{2} P_{2} . \tag{12}
\end{equation*}
$$

Using the equality (12), we have

$$
P_{3} X=Q_{3} X F^{3}
$$

where $P_{3}=G_{2} P_{2}, Q_{3}=H_{2} Q_{2}$.

A similar procedure can be used to construct the relation with higher degrees of the matrix F,

$$
\begin{equation*}
P_{k} X=Q_{k} X F^{k}, \quad k=1,2, \ldots \tag{13}
\end{equation*}
$$

where $P_{k}=G_{k-1} P_{k-1}, Q_{k}=H_{k-1} Q_{k-1}$, and the columns of the matrix [$\left.G_{k-1}, H_{k-1}\right]^{\top}$ form the basis of the null space of [$Q_{k-1}^{\top},-P_{k-1}^{\top}$], that is,

$$
G_{k-1} Q_{k-1}=H_{k-1} P_{k-1}, \quad k=2,3, \ldots
$$

It is easily seen that

$$
\begin{equation*}
P_{k}=G_{k-1} G_{k-2} \cdots G_{2} G_{1} P_{1}, \quad Q_{k}=H_{k-1} H_{k-2} \cdots H_{2} H_{1} Q_{1} \tag{14}
\end{equation*}
$$

Assume that the minimal polynomial of the matrix F is

$$
\begin{equation*}
m_{F}(\lambda)=\lambda^{l}+f_{1} \lambda^{l-1}+\cdots+f_{l-1} \lambda+f_{l} \tag{15}
\end{equation*}
$$

Then, by (13), we have

$$
\begin{aligned}
& \left(P_{l}+f_{1} H_{l-1} P_{l-1}+f_{2} H_{l-1} H_{l-2} P_{l-2}+\cdots+f_{l-1} H_{l-1} H_{l-2} \cdots H_{2} H_{1} P_{1}+f_{l} Q_{l}\right) X \\
& \quad=Q_{l} X\left(F^{l}+f_{1} F^{l-1}+\cdots+f_{l-1} F+f_{l} I_{p}\right)=0
\end{aligned}
$$

In summary of the above discussion and using Lemma 1, we have proved the following result:
Theorem 1. Let $P_{1}=\left(I_{n}-B B^{+}\right) K, Q_{1}=\left(I_{n}-B B^{+}\right) E$. Assume that the matrix [G_{k-1}, H_{k-1}] is of full row rank and satisfies $G_{k-1} Q_{k-1}=H_{k-1} P_{k-1}, k=2,3, \ldots$, where $P_{k}=G_{k-1} P_{k-1}, Q_{k}=H_{k-1} Q_{k-1}, k=2,3, \ldots$ Let the minimal polynomial of the matrix F be given by (15). Set $D=P_{l}+f_{1} H_{l-1} P_{l-1}+f_{2} H_{l-1} H_{l-2} P_{l-2}+\cdots+f_{l-1} H_{l-1} H_{l-2} \cdots H_{2} H_{1} P_{1}+f_{l} Q_{l}$, then the solution of Eq. (3) can be expressed as

$$
\begin{align*}
& X=\left(I_{n}-D^{+} D\right) V \tag{16}\\
& Y=B^{+}\left[K\left(I_{n}-D^{+} D\right) V-E\left(I_{n}-D^{+} D\right) V F\right]+\left(I_{q}-B^{+} B\right) T \tag{17}
\end{align*}
$$

where $V \in \mathbf{C}^{n \times p}, T \in \mathbf{C}^{q \times p}$ are arbitrary matrices.

3. Matrix equation $M X F^{2}+D X F+K X=B Y$

In this section, we study the solution of the matrix equation (2). Using Lemma 1, the equation of (2) with unknown matrix Y has a solution if and only if

$$
\begin{equation*}
\left(I_{n}-B B^{+}\right)\left(M X F^{2}+D X F+K X\right)=0 \tag{18}
\end{equation*}
$$

when the condition (18) is satisfied, the general solution to the equation of (2) with unknown matrix Y is given by

$$
Y=B^{+}\left(M X F^{2}+D X F+K X\right)+\left(I_{q}-B^{+} B\right) T
$$

where $T \in \mathbf{C}^{q \times p}$ is an arbitrary matrix.
Let

$$
\tilde{P}_{1}=\left[\begin{array}{cc}
-\left(I_{n}-B B^{+}\right) K & 0 \tag{19}\\
0 & \left(I_{n}-B B^{+}\right) M
\end{array}\right], \quad \tilde{Q}_{1}=\left[\begin{array}{cc}
\left(I_{n}-B B^{+}\right) D & \left(I_{n}-B B^{+}\right) M \\
\left(I_{n}-B B^{+}\right) M & 0
\end{array}\right]
$$

then, the equation of (18) is equivalent to

$$
\tilde{P}_{1}\left[\begin{array}{c}
X \tag{20}\\
X F
\end{array}\right]=\tilde{Q}_{1}\left[\begin{array}{c}
X \\
X F
\end{array}\right] F
$$

By a similar approach in Section 2, we have

$$
\tilde{P}_{k}\left[\begin{array}{c}
X \tag{21}\\
X F
\end{array}\right]=\tilde{Q}_{k}\left[\begin{array}{c}
X \\
X F
\end{array}\right] F^{k}
$$

where the matrix $\left[\tilde{G}_{k-1}, \tilde{H}_{k-1}\right.$] is of full row rank and is determined alternately by the following relations:

$$
\begin{align*}
& \tilde{G}_{k-1} \tilde{Q}_{k-1}=\tilde{H}_{k-1} \tilde{P}_{k-1}, \quad k=2,3, \ldots, \tag{22}\\
& \tilde{P}_{k}=\tilde{G}_{k-1} \tilde{P}_{k-1}, \quad \tilde{Q}_{k}=\tilde{H}_{k-1} \tilde{Q}_{k-1}, \quad k=2,3, \ldots \tag{23}
\end{align*}
$$

Assume that the minimal polynomial of the matrix F is given by (15). Then, by (21), we have

$$
\tilde{D}\left[\begin{array}{c}
X \tag{24}\\
X F
\end{array}\right]=0
$$

where $\tilde{D}=\tilde{P}_{l}+f_{1} \tilde{H}_{l-1} \tilde{P}_{l-1}+f_{2} \tilde{H}_{l-1} \tilde{H}_{l-2} \tilde{P}_{l-2}+\cdots+f_{l-1} \tilde{H}_{l-1} \tilde{H}_{l-2} \cdots \tilde{H}_{2} \tilde{H}_{1} \tilde{P}_{1}+f_{l} \tilde{Q}_{l}$.
Let

$$
\tilde{D}=\left[P_{1},-Q_{1}\right] .
$$

Then the equation of (24) is equivalent to

$$
\begin{equation*}
P_{1} X=Q_{1} X F \tag{7}
\end{equation*}
$$

and the solution is given by (16).
By now, we have proved the following result:
Theorem 2. Let $\tilde{P}_{1}, \tilde{Q}_{1}$ be given by (19). Assume that the matrix $\left[\tilde{G}_{k-1}, \tilde{H}_{k-1}\right]$ is of full row rank and satisfies $\tilde{G}_{k-1} \tilde{Q}_{k-1}=\tilde{H}_{k-1} \tilde{P}_{k-1}$, $k=2,3, \ldots$, where $\tilde{P}_{k}=\tilde{G}_{k-1} \tilde{P}_{k-1}, \tilde{Q}_{k}=\tilde{H}_{k-1} \tilde{Q}_{k-1}, k=2,3, \ldots$. Let the minimal polynomial of the matrix F be given by (15). Set $\tilde{D}=\tilde{P}_{l}+f_{1} \tilde{H}_{l-1} \tilde{P}_{l-1}+f_{2} \tilde{H}_{l-1} \tilde{H}_{l-2} \tilde{P}_{l-2}+\cdots+f_{l-1} \tilde{H}_{l-1} \tilde{H}_{l-2} \cdots \tilde{H}_{2} \tilde{H}_{1} \tilde{P}_{1}+f_{l} \tilde{Q}_{l}$ and then partition \tilde{D} as $\tilde{D}=\left[P_{1},-Q_{1}\right]$. Then the solution of Eq. (2) can be expressed as

$$
\begin{align*}
& X=\left(I_{n}-D^{+} D\right) V, \tag{25}\\
& Y=B^{+}\left[M\left(I_{n}-D^{+} D\right) V F^{2}+D\left(I_{n}-D^{+} D\right) V F+K\left(I_{n}-D^{+} D\right) V\right]+\left(I_{q}-B^{+} B\right) T, \tag{26}
\end{align*}
$$

where $D=P_{l}+f_{1} H_{l-1} P_{l-1}+f_{2} H_{l-1} H_{l-2} P_{l-2}+\cdots+f_{l-1} H_{l-1} H_{l-2} \cdots H_{2} H_{1} P_{1}+f_{l} Q_{l}$, and $V \in \mathbf{C}^{n \times p}, T \in \mathbf{C}^{q \times p}$ are arbitrary matrices.

References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverse: Theory and Applications, Wiley, New York, 1974.
[2] E.K. Chu, B.N. Datta, Numerically robust pole assignment for second-order systems, Internat. J. Control 64 (1996) 1113-1127.
[3] M. Dehghan, M. Hajarian, Efficient iterative method for solving the second-order Sylvester matrix equation $E V F^{2}-A V F-C V=B W$, IET Control Theory Appl. 3 (2009) 1401-1409.
[4] F. Ding, T. Chen, Iterative least squares solutions of coupled Sylvester matrix equations, Systems Control Lett. 54 (2005) 95-107.
[5] G.R. Duan, Solution to matrix equation $A V+B W=E V F$ and eigenstructure assignment for descriptor systems, Automatica 28 (1992) 639-643.
[6] G.R. Duan, Solution to matrix equation $A V+B W=V F$ and their application to eigenstructure assignment in linear systems, IEEE Trans. Aurora. Control 38 (1993) 276-280.
[7] G.R. Duan, On the solution to Sylvester matrix equation $A V-B W=E V F$, IEEE Trans. Aurora. Control 41 (1996) 612-614.
[8] G.R. Duan, Two parametric approaches for eigenstructure assignment in second-order linear systems, J. Control Theory Appl. 1 (2003) $59-64$.
[9] G.R. Duan, G.P. Liu, S. Thompson, Eigenstructure assignment design for proportional-integral observers: continuous-time case, IEE Proc. Control Theory Appl. 148 (2001) 263-267.
[10] G.R. Duan, B. Zhou, Solution to the second-order Sylvester matrix equation $M V F^{2}+D V F+K V=B W$, IEEE Trans. Automat. Control 51 (2006) $805-809$.
[11] K.R. Gavin, S.P. Bhattacharyya, Robust and well-conditioned eigenstructure assignment via Sylvester's equation, Optimal Control Appl. Methods 4 (1983) 205-212.
[12] D.J. Inman, A. Kress, Eigenstructure assignment using inverse eigenvalue methods, J. Guid. Contr. Dynam. 18 (1995) 625-627.
[13] A. Jameson, Solution of the equation $A X-X B=C$ by inversion of an $M \times M$ or $N \times N$ matrix, SIAM J. Appl. Math. 16 (1968) $1020-1023$.
[14] Y. Kim, H.S. Kim, Eigenstructure assignment algorithm for mechanical second-order systems, J. Guid. Contr. Dynam. 22 (1999) $729-731$.
[15] W.-W. Lin, S.-F. Xu, Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl. 38 (2006) 26-39.
[16] F. Rincon, Feedback stabilization of second-order models, PhD dissertation, Northern Illinois University, De Kalb, Illinois, USA, 1992.
[17] B. Zhou, G.R. Duan, A new solution to the generalized Sylvester matrix equation $A V-E V F=B W$, Systems Control Lett. 55 (2006) $193-198$.

[^0]: E-mail address: yuanyx_703@163.com (Y. Yuan).

